mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This is follow-up of #164912 to mark unused C++ parameters to improve code readability. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165121 Approved by: https://github.com/Skylion007
167 lines
5.1 KiB
C++
167 lines
5.1 KiB
C++
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_symnode.h>
|
|
|
|
namespace pybind11::detail {
|
|
|
|
bool type_caster<c10::SymInt>::load(py::handle src, bool /*unused*/) {
|
|
if (torch::is_symint(src)) {
|
|
auto node = src.attr("node");
|
|
if (py::isinstance<c10::SymNodeImpl>(node)) {
|
|
value = c10::SymInt(py::cast<c10::SymNode>(node));
|
|
return true;
|
|
}
|
|
|
|
value = c10::SymInt(static_cast<c10::SymNode>(
|
|
c10::make_intrusive<torch::impl::PythonSymNodeImpl>(node)));
|
|
return true;
|
|
}
|
|
|
|
auto raw_obj = src.ptr();
|
|
|
|
if (THPVariable_Check(raw_obj)) {
|
|
auto& var = THPVariable_Unpack(raw_obj);
|
|
if (var.numel() == 1 &&
|
|
at::isIntegralType(var.dtype().toScalarType(), /*include_bool*/ true)) {
|
|
auto scalar = var.item();
|
|
TORCH_INTERNAL_ASSERT(scalar.isIntegral(/*include bool*/ false));
|
|
value = scalar.toSymInt();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (THPUtils_checkIndex(raw_obj)) {
|
|
value = c10::SymInt{THPUtils_unpackIndex(raw_obj)};
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
py::handle type_caster<c10::SymInt>::cast(
|
|
const c10::SymInt& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
if (si.is_symbolic()) {
|
|
auto* py_node = dynamic_cast<torch::impl::PythonSymNodeImpl*>(
|
|
si.toSymNodeImplUnowned());
|
|
if (py_node) {
|
|
// Return the Python directly (unwrap)
|
|
return torch::get_symint_class()(py_node->getPyObj()).release();
|
|
} else {
|
|
// Wrap the C++ into Python
|
|
auto inner = py::cast(si.toSymNode());
|
|
if (!inner) {
|
|
throw python_error();
|
|
}
|
|
return torch::get_symint_class()(inner).release();
|
|
}
|
|
} else {
|
|
auto m = si.maybe_as_int();
|
|
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
|
|
return py::cast(m.value()).release();
|
|
}
|
|
}
|
|
|
|
bool type_caster<c10::SymFloat>::load(py::handle src, bool /*unused*/) {
|
|
if (torch::is_symfloat(src)) {
|
|
value = c10::SymFloat(static_cast<c10::SymNode>(
|
|
c10::make_intrusive<torch::impl::PythonSymNodeImpl>(src.attr("node"))));
|
|
return true;
|
|
}
|
|
|
|
auto raw_obj = src.ptr();
|
|
if (THPUtils_checkDouble(raw_obj)) {
|
|
value = c10::SymFloat{THPUtils_unpackDouble(raw_obj)};
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
py::handle type_caster<c10::SymFloat>::cast(
|
|
const c10::SymFloat& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
if (si.is_symbolic()) {
|
|
// TODO: generalize this to work with C++ backed class
|
|
auto* py_node =
|
|
dynamic_cast<torch::impl::PythonSymNodeImpl*>(si.toSymNodeImpl().get());
|
|
TORCH_INTERNAL_ASSERT(py_node);
|
|
return torch::get_symfloat_class()(py_node->getPyObj()).release();
|
|
} else {
|
|
return py::cast(si.as_float_unchecked()).release();
|
|
}
|
|
}
|
|
|
|
bool type_caster<c10::SymBool>::load(py::handle src, bool /*unused*/) {
|
|
if (torch::is_symbool(src)) {
|
|
value = c10::SymBool(static_cast<c10::SymNode>(
|
|
c10::make_intrusive<torch::impl::PythonSymNodeImpl>(src.attr("node"))));
|
|
return true;
|
|
}
|
|
|
|
auto raw_obj = src.ptr();
|
|
if (THPUtils_checkBool(raw_obj)) {
|
|
value = c10::SymBool{THPUtils_unpackBool(raw_obj)};
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
py::handle type_caster<c10::SymBool>::cast(
|
|
const c10::SymBool& si,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
if (auto m = si.maybe_as_bool()) {
|
|
return py::cast(*m).release();
|
|
} else {
|
|
// TODO: generalize this to work with C++ backed class
|
|
auto* py_node =
|
|
dynamic_cast<torch::impl::PythonSymNodeImpl*>(si.toSymNodeImpl().get());
|
|
TORCH_INTERNAL_ASSERT(py_node);
|
|
return torch::get_symbool_class()(py_node->getPyObj()).release();
|
|
}
|
|
}
|
|
|
|
bool type_caster<c10::Scalar>::load(py::handle src, bool /*unused*/) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
0, "pybind11 loading for c10::Scalar NYI (file a bug if you need it)");
|
|
}
|
|
|
|
py::handle type_caster<c10::Scalar>::cast(
|
|
const c10::Scalar& scalar,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
if (scalar.isIntegral(/*includeBool*/ false)) {
|
|
// We have to be careful here; we cannot unconditionally route through
|
|
// SymInt because integer data from Tensors can easily be MIN_INT or
|
|
// very negative, which conflicts with the allocated range.
|
|
if (scalar.isSymbolic()) {
|
|
return py::cast(scalar.toSymInt()).release();
|
|
} else {
|
|
if (scalar.type() == at::ScalarType::UInt64) {
|
|
return py::cast(scalar.toUInt64()).release();
|
|
} else {
|
|
return py::cast(scalar.toLong()).release();
|
|
}
|
|
}
|
|
} else if (scalar.isFloatingPoint()) {
|
|
// This isn't strictly necessary but we add it for symmetry
|
|
if (scalar.isSymbolic()) {
|
|
return py::cast(scalar.toSymFloat()).release();
|
|
} else {
|
|
return py::cast(scalar.toDouble()).release();
|
|
}
|
|
} else if (scalar.isBoolean()) {
|
|
if (scalar.isSymbolic()) {
|
|
return py::cast(scalar.toSymBool()).release();
|
|
}
|
|
return py::cast(scalar.toBool()).release();
|
|
} else if (scalar.isComplex()) {
|
|
return py::cast(scalar.toComplexDouble()).release();
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(0, "unrecognized scalar type ", scalar.type());
|
|
}
|
|
}
|
|
|
|
} // namespace pybind11::detail
|