Files
pytorch/torch/csrc/jit/api/function_impl.cpp
Yuanyuan Chen 36871622f1 [2/N] Mark unused parameters in C++ code (#165121)
This is follow-up of #164912 to mark unused C++ parameters to improve code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165121
Approved by: https://github.com/Skylion007
2025-10-15 03:04:39 +00:00

175 lines
5.2 KiB
C++

#include <c10/util/Flags.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/peephole.h>
#ifndef C10_MOBILE
#include <ATen/autocast_mode.h>
#include <torch/csrc/jit/passes/autocast.h>
#endif
// clang-format off
C10_DEFINE_bool(
torch_jit_do_not_store_optimized_graph,
false,
"Do not store the optimized graph.")
namespace torch::jit {
namespace {
c10::FunctionSchema defaultSchemaFor(const GraphFunction& function) {
std::vector<c10::Argument> args;
std::vector<c10::Argument> returns;
Graph& g = *function.graph();
size_t num_inputs = function.num_inputs();
for (const auto i : c10::irange(num_inputs)) {
const Value* v = g.inputs().at(i);
std::string name = v->hasDebugName() ? v->debugNameBase()
: ("argument_" + std::to_string(i));
args.emplace_back(std::move(name), unshapedType(g.inputs()[i]->type()));
}
for (const auto i : c10::irange(g.outputs().size())) {
returns.emplace_back("", unshapedType(g.outputs()[i]->type()));
}
return {function.name(), "", std::move(args), std::move(returns)};
}
template <typename T, typename F>
T* tryToGraphFunctionImpl(F& function) noexcept {
if (!function.isGraphFunction()) {
return nullptr;
}
return static_cast<T*>(&function);
}
template <typename T, typename F>
T& toGraphFunctionImpl(F& function) {
if (auto* g = tryToGraphFunctionImpl<T>(function)) {
return *g;
}
TORCH_INTERNAL_ASSERT(
false,
"Failed to downcast a Function to a GraphFunction. "
"This probably indicates that the JIT calling context needs a "
"special case on tryToGraphFunction() instead.");
}
} // namespace
static void placeholderCreator(GraphFunction& /*unused*/) {
throw RecursiveMethodCallError();
}
void GraphFunction::run(Stack& stack) {
C10_LOG_EVENT_SAMPLED(run, qualname().qualifiedName(), stack);
get_executor().run(stack);
}
c10::intrusive_ptr<c10::ivalue::Future> GraphFunction::runAsync(
Stack& stack,
TaskLauncher taskLauncher) {
return get_executor().runAsync(stack, std::move(taskLauncher));
}
void GraphFunction::ensure_defined() {
if (function_creator_) {
auto creator = function_creator_;
function_creator_ = placeholderCreator;
creator(*this);
function_creator_ = nullptr;
}
check_single_output();
}
const c10::FunctionSchema& GraphFunction::getSchema() const {
if (schema_ == nullptr) {
schema_ = std::make_unique<c10::FunctionSchema>(defaultSchemaFor(*this));
}
return *schema_;
}
std::shared_ptr<Graph> GraphFunction::optimized_graph() const {
std::lock_guard<std::recursive_mutex> lock(compile_mutex);
decltype(optimized_graphs_)::value_type graph;
auto& graph_ref = !FLAGS_torch_jit_do_not_store_optimized_graph
? optimized_graphs_[currentSpecialization()]
: graph;
if (graph_ref) {
return graph_ref;
}
graph_ref = graph_->copy();
if (getGraphExecutorOptimize()) {
preoptimizeGraph(graph_ref, force_no_amp_);
}
return graph_ref;
}
GraphFunction::SpecializationKey GraphFunction::currentSpecialization() const {
if (force_no_amp_) {
return SpecializationKey::AutocastOff;
}
#ifdef C10_MOBILE
// disabling autodiff pass for mobile build since autocast APIs don't exist
return SpecializationKey::AutocastOff;
#else
bool cpu_enabled = at::autocast::is_autocast_enabled(at::kCPU);
bool gpu_enabled = at::autocast::is_autocast_enabled(at::kCUDA);
if (cpu_enabled && gpu_enabled) {
return SpecializationKey::CpuGpuAutocastOn;
} else if (!cpu_enabled && !gpu_enabled) {
return SpecializationKey::AutocastOff;
} else {
return gpu_enabled ? SpecializationKey::GpuAutocastOn
: SpecializationKey::CpuAutocastOn;
}
#endif
}
void preoptimizeGraph(std::shared_ptr<Graph>& graph, bool disable_autocast) {
Inline(*graph);
// Peephole Optimize cleans up many "is None" checks and creates constant
// prop opportunities
PeepholeOptimize(graph, true);
// AliasDb construction can be slow, so run it just on immutable types
// to clean up constant Ifs & other easy wins
ConstantPropagationImmutableTypes(graph);
#ifndef C10_MOBILE
// Inject casts for automatic mixed precision
//
// TODO: Ideally, this pass could run earlier, before inlining
// or any other optimizations. That setup is preferable because:
// 1. The AMP pass would be self-contained and function independently
// of the any optimizations
// 2. AMP transformations would benefit from followup passes's cleanup
//
if (!disable_autocast) {
Autocast(graph);
}
#endif
ConstantPooling(graph);
}
GraphFunction* tryToGraphFunction(Function& function) noexcept {
return tryToGraphFunctionImpl<GraphFunction>(function);
}
GraphFunction& toGraphFunction(Function& function) {
return toGraphFunctionImpl<GraphFunction>(function);
}
const GraphFunction& toGraphFunction(const Function& function) {
return toGraphFunctionImpl<const GraphFunction>(function);
}
} // namespace torch::jit