mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
### Summary: This PR implements custom autograd functions for forward and backward to be used in APoT fake quantization. The implementation follows this doc about custom autograd functions: https://pytorch.org/tutorials/beginner/examples_autograd/polynomial_custom_function.html ### Test Plan: Run tests with: `python test/quantization/core/experimental/test_fake_quantize.py` Pull Request resolved: https://github.com/pytorch/pytorch/pull/81438 Approved by: https://github.com/jerryzh168
100 lines
3.8 KiB
Python
100 lines
3.8 KiB
Python
import torch
|
|
from torch import Tensor
|
|
import numpy as np
|
|
from torch.ao.quantization.experimental.apot_utils import float_to_apot, apot_to_float
|
|
|
|
# class to store APoT quantizer and
|
|
# implement quantize and dequantize
|
|
class APoTQuantizer():
|
|
alpha: torch.Tensor
|
|
gamma: torch.Tensor
|
|
quantization_levels: torch.Tensor
|
|
level_indices: torch.Tensor
|
|
|
|
def __init__(
|
|
self,
|
|
alpha: torch.Tensor,
|
|
gamma: torch.Tensor,
|
|
quantization_levels: torch.Tensor,
|
|
level_indices: torch.Tensor) -> None:
|
|
self.alpha = alpha
|
|
self.gamma = gamma
|
|
self.quantization_levels = quantization_levels
|
|
self.level_indices = level_indices
|
|
|
|
r""" Quantizes fp Tensor to integer APoT representation.
|
|
Conversion is based on the qparams from a specified APoT non-uniform observer.
|
|
The approach follows the method outlined in the APoT paper: https://arxiv.org/pdf/1909.13144.pdf.
|
|
Args:
|
|
tensor2quantize: fp Tensor
|
|
Returns:
|
|
result: APoT Tensor representation of tensor2quantize
|
|
"""
|
|
def quantize(self, tensor2quantize: Tensor):
|
|
result = torch.tensor([])
|
|
|
|
# map float_to_apot over tensor2quantize elements
|
|
tensor2quantize = tensor2quantize.detach().apply_(lambda x: float_to_apot(x,
|
|
self.quantization_levels,
|
|
self.level_indices,
|
|
self.alpha))
|
|
|
|
# convert to APoT int representation for dtype
|
|
tensor2quantize = tensor2quantize.int()
|
|
|
|
from torch.ao.quantization.experimental.APoT_tensor import TensorAPoT
|
|
|
|
result = TensorAPoT(self, tensor2quantize)
|
|
|
|
return result
|
|
|
|
r""" Dequantizes integer Tensor to floating point (fp) representation
|
|
based on the calculated quantization levels from a specified APoT non-uniform observer.
|
|
The approach follows the method outlined in the APoT paper: https://arxiv.org/pdf/1909.13144.pdf.
|
|
Args:
|
|
apot_tensor: quantized APoT Tensor to dequantize
|
|
Returns:
|
|
result: fp representation of input Tensor
|
|
"""
|
|
def dequantize(self, apot_tensor) -> Tensor:
|
|
apot_tensor_data = apot_tensor.data
|
|
|
|
# map apot_to_float over tensor2quantize elements
|
|
result_temp = np.empty(apot_tensor_data.size())
|
|
for ele in apot_tensor_data:
|
|
new_ele = apot_to_float(ele, self.quantization_levels, self.level_indices)
|
|
np.append(result_temp, new_ele)
|
|
|
|
result = torch.from_numpy(result_temp).int()
|
|
|
|
return result
|
|
|
|
def q_apot_alpha(self) -> float:
|
|
raise NotImplementedError
|
|
|
|
r""" Global method to create quantizer and call quantizer quantize_APoT
|
|
Args:
|
|
tensor2quantize: fp Tensor to quantize
|
|
alpha: Tensor qparam alpha (clipping level)
|
|
gamma: Tensor qparam gamma (scale factor for quantization levels)
|
|
quantization levels: Tensor with fp quantization levels
|
|
level indices: Tensor with integer quantization level indices
|
|
Returns:
|
|
result: ApoT Tensor representation of tensor2quantize
|
|
"""
|
|
def quantize_APoT(tensor2quantize: Tensor, alpha: Tensor, gamma: Tensor, quantization_levels: Tensor, level_indices: Tensor):
|
|
quantizer = APoTQuantizer(alpha=alpha, gamma=gamma, quantization_levels=quantization_levels, level_indices=level_indices)
|
|
result = quantizer.quantize(tensor2quantize)
|
|
return result
|
|
|
|
r""" Global method to create quantizer and call quantizer dequantize_APoT
|
|
Args:
|
|
apot_tensor: APoT Tensor to dequantize
|
|
Returns:
|
|
result: fp Tensor dequantized from apot_tensor
|
|
"""
|
|
def dequantize_APoT(apot_tensor) -> Tensor:
|
|
quantizer = apot_tensor.quantizer
|
|
result = quantizer.dequantize(apot_tensor)
|
|
return result
|