Files
pytorch/torchgen/api/structured.py
Edward Yang 36420b5e8c Rename tools/codegen to torchgen (#76275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76275

In preparation for addressing
https://github.com/pytorch/pytorch/issues/73212

Diff was generated with:

```
git mv tools/codegen torchgen
git grep -l 'tools.codegen' | xargs sed -i 's/tools.codegen/torchgen/g'
sed -i "s/\${TOOLS_PATH}\/codegen/\${TORCH_ROOT}\/torchgen/g" caffe2/CMakeLists.txt
```

and a manual edits to:

* tools/test/test_gen_backend_stubs.py
* torchgen/build.bzl
* torchgen/gen_backend_stubs.py

aka this diff:

```
 diff --git a/tools/test/test_gen_backend_stubs.py b/tools/test/test_gen_backend_stubs.py
index 3dc26c6d2d..104054575e 100644
 --- a/tools/test/test_gen_backend_stubs.py
+++ b/tools/test/test_gen_backend_stubs.py
@@ -9,7 +9,7 @@ from torchgen.gen_backend_stubs import run
 from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE  # noqa: F401

 path = os.path.dirname(os.path.realpath(__file__))
-gen_backend_stubs_path = os.path.join(path, '../torchgen/gen_backend_stubs.py')
+gen_backend_stubs_path = os.path.join(path, '../../torchgen/gen_backend_stubs.py')

 # gen_backend_stubs.py is an integration point that is called directly by external backends.
 # The tests here are to confirm that badly formed inputs result in reasonable error messages.
 diff --git a/torchgen/build.bzl b/torchgen/build.bzl
index ed04e35a43..d00078a3cf 100644
 --- a/torchgen/build.bzl
+++ b/torchgen/build.bzl
@@ -1,6 +1,6 @@
 def define_targets(rules):
     rules.py_library(
-        name = "codegen",
+        name = "torchgen",
         srcs = rules.glob(["**/*.py"]),
         deps = [
             rules.requirement("PyYAML"),
@@ -11,6 +11,6 @@ def define_targets(rules):

     rules.py_binary(
         name = "gen",
-        srcs = [":codegen"],
+        srcs = [":torchgen"],
         visibility = ["//visibility:public"],
     )
 diff --git a/torchgen/gen_backend_stubs.py b/torchgen/gen_backend_stubs.py
index c1a672a655..beee7a15e0 100644
 --- a/torchgen/gen_backend_stubs.py
+++ b/torchgen/gen_backend_stubs.py
@@ -474,7 +474,7 @@ def run(
 ) -> None:

     # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
-    pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
+    pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
     template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")

     def make_file_manager(install_dir: str) -> FileManager:
```

run_all_fbandroid_tests

Test Plan: sandcastle

Reviewed By: albanD, ngimel

Differential Revision: D35770317

fbshipit-source-id: 153ac4a7fef15b1e750812a90bfafdbc8f1ebcdf
(cherry picked from commit c6d485d1d4648fa1c8a4c14c5bf3d8e899b9b4dd)
2022-04-25 01:38:06 +00:00

150 lines
5.5 KiB
Python

from torchgen.model import (
Argument,
BaseTy,
BaseType,
ListType,
NativeFunctionsGroup,
OptionalType,
SelfArgument,
TensorOptionsArguments,
Type,
)
from torchgen.api.types import (
ArgName,
BaseCType,
Binding,
ArrayRefCType,
ConstRefCType,
OptionalCType,
NamedCType,
tensorT,
scalarT,
intArrayRefT,
dimnameListT,
optionalTensorRefT,
optionalScalarRefT,
optionalIntArrayRefT,
iTensorListRefT,
)
from torchgen.api import cpp
from torchgen.utils import assert_never
from typing import Union, List
# This file describes the translation of JIT schema to the structured functions API.
# This is similar to native API, but a number of historical problems with native
# API have been fixed.
# Translation of types occuring in JIT arguments to a C++ argument type.
# NB: For now, mutable doesn't do anything; but it could if we make
# some more nominal types
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
# If it's a value type, do the value type translation
r = cpp.valuetype_type(t, binds=binds)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
elif t.name == BaseTy.Scalar:
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if t.elem == BaseType(BaseTy.Tensor):
return NamedCType(binds, BaseCType(optionalTensorRefT))
elif t.elem == BaseType(BaseTy.Scalar):
return NamedCType(binds, BaseCType(optionalScalarRefT))
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
if t.elem == BaseType(BaseTy.Tensor):
return NamedCType(binds, BaseCType(iTensorListRefT))
# TODO: delete these special cases; see torchgen.api.cpp--these
# must be changed in tandem, but there are problems; see
# https://github.com/pytorch/pytorch/pull/51485
elif str(t.elem) == "int":
return NamedCType(binds, BaseCType(intArrayRefT))
elif str(t.elem) == "Dimname":
return NamedCType(binds, BaseCType(dimnameListT))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, ArrayRefCType(elem.type))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
# returns_type intentionally omitted, because structured kernels never "return";
# instead, they always indirectly report their outputs (in the case of a meta
# function, by calling set_output; in the case of an impl function, by writing
# directly into the provided out argument).
# Structured kernels are never defaulted
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]:
if isinstance(a, Argument):
return [
Binding(
nctype=argument_type(a, binds=a.name),
name=a.name,
default=None,
argument=a,
)
]
elif isinstance(a, SelfArgument):
return argument(a.argument)
elif isinstance(a, TensorOptionsArguments):
raise AssertionError("structured kernels don't support TensorOptions yet")
else:
assert_never(a)
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
if g.out.precomputed:
# A list of parameters for the impl function with
# certain parameters replaced with precomputed counterparts
# as specified in native_functions.yaml.
non_out_args_replaced: List[
Union[Argument, TensorOptionsArguments, SelfArgument]
] = []
for a in g.out.func.arguments.non_out:
if isinstance(a, Argument) and a.name in g.out.precomputed.replace:
# If a is in precompute.replace, append the parameters
# that should replace it onto non_out_args_replaced.
for replacement in g.out.precomputed.replace[a.name]:
non_out_args_replaced.append(replacement)
else:
# If not, push a as it is.
non_out_args_replaced.append(a)
args.extend(non_out_args_replaced)
# g.out.precomputed.add is the list of parameters that are added
# without replacement after the non out args and just before the out args
args.extend(g.out.precomputed.add)
else:
args.extend(g.out.func.arguments.non_out)
args.extend(g.out.func.arguments.out)
return [r for arg in args for r in argument(arg)]
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
args.extend(g.functional.func.arguments.non_out)
return [r for arg in args for r in argument(arg)]
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
args.extend(g.out.func.arguments.out)
return [r for arg in args for r in argument(arg)]