mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/76275 In preparation for addressing https://github.com/pytorch/pytorch/issues/73212 Diff was generated with: ``` git mv tools/codegen torchgen git grep -l 'tools.codegen' | xargs sed -i 's/tools.codegen/torchgen/g' sed -i "s/\${TOOLS_PATH}\/codegen/\${TORCH_ROOT}\/torchgen/g" caffe2/CMakeLists.txt ``` and a manual edits to: * tools/test/test_gen_backend_stubs.py * torchgen/build.bzl * torchgen/gen_backend_stubs.py aka this diff: ``` diff --git a/tools/test/test_gen_backend_stubs.py b/tools/test/test_gen_backend_stubs.py index 3dc26c6d2d..104054575e 100644 --- a/tools/test/test_gen_backend_stubs.py +++ b/tools/test/test_gen_backend_stubs.py @@ -9,7 +9,7 @@ from torchgen.gen_backend_stubs import run from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE # noqa: F401 path = os.path.dirname(os.path.realpath(__file__)) -gen_backend_stubs_path = os.path.join(path, '../torchgen/gen_backend_stubs.py') +gen_backend_stubs_path = os.path.join(path, '../../torchgen/gen_backend_stubs.py') # gen_backend_stubs.py is an integration point that is called directly by external backends. # The tests here are to confirm that badly formed inputs result in reasonable error messages. diff --git a/torchgen/build.bzl b/torchgen/build.bzl index ed04e35a43..d00078a3cf 100644 --- a/torchgen/build.bzl +++ b/torchgen/build.bzl @@ -1,6 +1,6 @@ def define_targets(rules): rules.py_library( - name = "codegen", + name = "torchgen", srcs = rules.glob(["**/*.py"]), deps = [ rules.requirement("PyYAML"), @@ -11,6 +11,6 @@ def define_targets(rules): rules.py_binary( name = "gen", - srcs = [":codegen"], + srcs = [":torchgen"], visibility = ["//visibility:public"], ) diff --git a/torchgen/gen_backend_stubs.py b/torchgen/gen_backend_stubs.py index c1a672a655..beee7a15e0 100644 --- a/torchgen/gen_backend_stubs.py +++ b/torchgen/gen_backend_stubs.py @@ -474,7 +474,7 @@ def run( ) -> None: # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py - pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute() + pytorch_root = pathlib.Path(__file__).parent.parent.absolute() template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") def make_file_manager(install_dir: str) -> FileManager: ``` run_all_fbandroid_tests Test Plan: sandcastle Reviewed By: albanD, ngimel Differential Revision: D35770317 fbshipit-source-id: 153ac4a7fef15b1e750812a90bfafdbc8f1ebcdf (cherry picked from commit c6d485d1d4648fa1c8a4c14c5bf3d8e899b9b4dd)
300 lines
11 KiB
Python
300 lines
11 KiB
Python
from typing import List, Union, Tuple, Optional
|
|
from torchgen.model import (
|
|
Type,
|
|
BaseTy,
|
|
BaseType,
|
|
OptionalType,
|
|
ListType,
|
|
OperatorName,
|
|
FunctionSchema,
|
|
Return,
|
|
TensorOptionsArguments,
|
|
Argument,
|
|
)
|
|
from torchgen.api.types import (
|
|
CType,
|
|
BaseCppType,
|
|
BaseCType,
|
|
OptionalCType,
|
|
NamedCType,
|
|
deviceT,
|
|
layoutT,
|
|
VectorCType,
|
|
boolT,
|
|
longT,
|
|
doubleT,
|
|
ListCType,
|
|
stringT,
|
|
scalarT,
|
|
scalarTypeT,
|
|
memoryFormatT,
|
|
)
|
|
|
|
valueT = BaseCppType("torch::lazy", "Value")
|
|
# this is a bad hack. I need to refactor the data model to represent each arg in the schema as an object,
|
|
# making it easier to represent special properties of an arg.
|
|
tensorListValueT = BaseCppType("torch::lazy", "Value")
|
|
|
|
|
|
def process_ir_type(
|
|
typ: Type,
|
|
) -> Union[BaseCType, VectorCType, OptionalCType, ListCType]:
|
|
"""
|
|
This function takes a type from NativeFunctions and converts it for use with
|
|
lazy tensor codegen.
|
|
|
|
Type conversion for lazy currently consists of
|
|
(1) changing at::Tensors into lazy::Values
|
|
(2) wrapping everything in a BaseCType
|
|
(3) making cpp-reference types into cpp-value types (e.g. vector instead of IntArrayRef)
|
|
|
|
(1) converts at::Tensors to lazy::Values (which wrap lazy::Nodes, with which Lazy IR represents tensors.)
|
|
There is special handling for Optional[Tensor] or List[Tensor], etc- hence 'tensor-like'
|
|
|
|
This is incomplete- there are assertions in places that it's expected to need to add
|
|
more types as the codegen is used with more operators.
|
|
"""
|
|
if isinstance(typ, BaseType):
|
|
if typ.name == BaseTy.Tensor:
|
|
return BaseCType(valueT)
|
|
elif typ.name == BaseTy.Scalar:
|
|
# at::scalar has special handling,
|
|
# and is wrapped in an lazy::Value just like at::tensor
|
|
return BaseCType(valueT)
|
|
elif typ.name == BaseTy.ScalarType:
|
|
return BaseCType(scalarTypeT)
|
|
elif typ.name == BaseTy.int:
|
|
return BaseCType(longT)
|
|
elif typ.name == BaseTy.bool:
|
|
return BaseCType(boolT)
|
|
elif typ.name == BaseTy.float:
|
|
return BaseCType(doubleT)
|
|
elif typ.name == BaseTy.str:
|
|
return BaseCType(stringT)
|
|
elif typ.name == BaseTy.Device:
|
|
return BaseCType(deviceT)
|
|
elif typ.name == BaseTy.Layout:
|
|
return BaseCType(layoutT)
|
|
elif typ.name == BaseTy.MemoryFormat:
|
|
return BaseCType(memoryFormatT)
|
|
else:
|
|
raise AssertionError(f"TODO add support for type {repr(typ)}")
|
|
elif isinstance(typ, OptionalType):
|
|
return OptionalCType(process_ir_type(typ.elem))
|
|
elif isinstance(typ, ListType):
|
|
if str(typ.elem) == "Tensor?":
|
|
# TODO(whc) is this actually correct? or should it use a Vector like above
|
|
return ListCType(OptionalCType(BaseCType(valueT)))
|
|
elif str(typ.elem) == "Tensor":
|
|
# this is a TensorList which comes in from GetTensorList as a Value
|
|
return BaseCType(tensorListValueT)
|
|
else:
|
|
return VectorCType(process_ir_type(typ.elem))
|
|
else:
|
|
raise AssertionError(f"unrecognized type {repr(typ)}")
|
|
|
|
|
|
def isValueType(typ: CType) -> bool:
|
|
"""
|
|
Given a type, determine if it is a Value-like type. This is equivalent to
|
|
being Tensor-like, but assumes the type has already been transformed.
|
|
"""
|
|
if isinstance(typ, BaseCType):
|
|
# I am regretting my naming conventions, but now we are wrapping at::scalar in
|
|
# lazy value, while preserving other 'scalar' types as scalars in the IR
|
|
return typ.type == valueT or typ.type == scalarT
|
|
elif isinstance(typ, (OptionalCType, ListCType, VectorCType)):
|
|
return isValueType(typ.elem)
|
|
return False
|
|
|
|
|
|
def isWrappedScalarType(typ: Type) -> bool:
|
|
"""
|
|
Given a type, determine if it is a c10::scalar which we will wrap in a lazy Value.
|
|
Since we literally change the type from scalarT to valueT, information is lost.
|
|
This function helps build a list of wrapped scalars to save that information
|
|
"""
|
|
if isinstance(typ, BaseType):
|
|
# I am regretting my naming conventions, but now we are wrapping at::scalar in
|
|
# lazy value, while preserving other 'scalar' types as scalars in the IR
|
|
return typ.name == BaseTy.Scalar
|
|
elif isinstance(typ, (OptionalType, ListType)):
|
|
return isWrappedScalarType(typ.elem)
|
|
return False
|
|
|
|
|
|
def isGeneratorType(typ: Type) -> bool:
|
|
if isinstance(typ, BaseType):
|
|
return typ.name == BaseTy.Generator
|
|
elif isinstance(typ, (OptionalType)):
|
|
return isGeneratorType(typ.elem)
|
|
return False
|
|
|
|
|
|
class LazyArgument:
|
|
name: str
|
|
orig_type: Type
|
|
lazy_type_: Optional[CType]
|
|
is_wrapped_scalar: bool
|
|
is_generator: bool
|
|
|
|
# true if this argument is or contains a lazy IR value
|
|
is_lazy_value: bool
|
|
|
|
def __init__(self, arg: Argument):
|
|
self.name = arg.name
|
|
self.orig_type = arg.type
|
|
self.is_generator = isGeneratorType(arg.type)
|
|
if self.is_generator:
|
|
assert isinstance(
|
|
arg.type, OptionalType
|
|
), "We expect all generators are optional since currently they are"
|
|
# there is no handling for generators in TorchScript IR (or XLA)
|
|
# so we fall back to eager if the (optional)generator has value, and otherwise
|
|
# its null and safe to exclude from lazy IR
|
|
self.lazy_type_ = None
|
|
else:
|
|
self.lazy_type_ = process_ir_type(arg.type)
|
|
self.is_wrapped_scalar = isWrappedScalarType(arg.type)
|
|
|
|
self.is_lazy_value = not self.is_generator and isValueType(self.lazy_type)
|
|
|
|
@property
|
|
def lazy_type(self) -> CType:
|
|
assert (
|
|
self.lazy_type_ is not None
|
|
), f"Attempted to access lazy_type for invalid argument {self.name}"
|
|
return self.lazy_type_
|
|
|
|
|
|
# Inspired by a FunctionSchema object, a LazyIrSchema holds the schema of a Lazy IR node.
|
|
# Unlike a FunctionSchema, it has no round-trippable string form (relating to the YAML),
|
|
# but carries type information from a native FunctionSchema modified for use with IR nodes,
|
|
# and preserving original argument names.
|
|
class LazyIrSchema:
|
|
# The name of the operator this function schema describes.
|
|
name: "OperatorName"
|
|
|
|
positional_args: Tuple[LazyArgument, ...]
|
|
keyword_args: Tuple[LazyArgument, ...]
|
|
|
|
# TODO: Need to handle collisions with argument names at some point
|
|
returns: Tuple["Return", ...]
|
|
|
|
# if this schema has a Generator arg, list its orig ctype/name but don't
|
|
# build a LazyArgument since lazy IR doesn't support it
|
|
generator_arg: Optional[NamedCType] = None
|
|
|
|
def __init__(self, func: FunctionSchema):
|
|
|
|
positional_args = []
|
|
for arg_field in ["pre_self_positional", "self_arg", "post_self_positional"]:
|
|
if arg_field == "self_arg" and func.arguments.self_arg is not None:
|
|
arg = getattr(func.arguments, "self_arg").argument
|
|
positional_args.append(LazyArgument(arg))
|
|
elif getattr(func.arguments, arg_field) is not None:
|
|
positional_args.extend(
|
|
[LazyArgument(arg) for arg in getattr(func.arguments, arg_field)]
|
|
)
|
|
self.positional_args = tuple(positional_args)
|
|
|
|
keyword_args = []
|
|
for arg_field in [
|
|
"pre_tensor_options_kwarg_only",
|
|
"tensor_options",
|
|
"post_tensor_options_kwarg_only",
|
|
"out",
|
|
]:
|
|
curr_args = getattr(func.arguments, arg_field)
|
|
if curr_args is not None:
|
|
if isinstance(curr_args, TensorOptionsArguments):
|
|
curr_args = curr_args.all()
|
|
for arg in curr_args:
|
|
if isGeneratorType(arg.type):
|
|
assert (
|
|
self.generator_arg is None
|
|
), "We expect there is only one generator arg"
|
|
self.generator_arg = NamedCType(arg.name, arg.type)
|
|
keyword_args.extend([LazyArgument(arg) for arg in curr_args])
|
|
self.keyword_args = tuple(keyword_args)
|
|
self.name = func.name
|
|
self.returns = func.returns
|
|
|
|
@property
|
|
def node_name(self) -> str:
|
|
"""
|
|
Return camel-case version of op in node.
|
|
|
|
Note: This function also appends any `overload_name` in the operation.
|
|
For example, if the op is `bitwise_and.Tensor`, the returned name
|
|
will be `BitwiseAndTensor`.
|
|
"""
|
|
op_name = f"{self.name.name}_{self.name.overload_name}".lower()
|
|
return "".join(word.capitalize() or "" for word in op_name.split("_"))
|
|
|
|
@property
|
|
def aten_name(self) -> str:
|
|
return f"{self.name.name}"
|
|
|
|
@property
|
|
def base_name(self) -> str:
|
|
return f"{self.name.name.base}"
|
|
|
|
def filtered_args(
|
|
self,
|
|
positional: bool = True,
|
|
keyword: bool = True,
|
|
values: bool = True,
|
|
scalars: bool = True,
|
|
generator: bool = False,
|
|
) -> List[LazyArgument]:
|
|
# This function maintains the sorted order of arguments but provides different filtered views.
|
|
# Some parts of the code care about kwargs vs args (TS lowerings),
|
|
# other parts care about whether they need to wrap the arg in a lazy value or leave it alone.
|
|
# Generators are special cased, as they are needed for fallback/shape-inference but not supported
|
|
# in TS lowerings and therefore also omitted from lazy IR.
|
|
args: List[LazyArgument] = []
|
|
if positional:
|
|
args.extend(self.positional_args)
|
|
if keyword:
|
|
args.extend(self.keyword_args)
|
|
|
|
if values and scalars and generator:
|
|
return args
|
|
elif values and scalars:
|
|
return [a for a in args if not a.is_generator]
|
|
elif values:
|
|
return [a for a in args if a.is_lazy_value]
|
|
elif scalars:
|
|
return [
|
|
a
|
|
for a in args
|
|
if not a.is_lazy_value and (generator or not a.is_generator)
|
|
]
|
|
|
|
return []
|
|
|
|
@property
|
|
def positional_values(self) -> List[LazyArgument]:
|
|
return self.filtered_args(
|
|
positional=True, keyword=False, values=True, scalars=False
|
|
)
|
|
|
|
@property
|
|
def positional_scalars(self) -> List[LazyArgument]:
|
|
return self.filtered_args(
|
|
positional=True, keyword=False, values=False, scalars=True
|
|
)
|
|
|
|
@property
|
|
def keyword_values(self) -> List[LazyArgument]:
|
|
return self.filtered_args(
|
|
positional=False, keyword=True, values=True, scalars=False
|
|
)
|
|
|
|
@property
|
|
def keyword_scalars(self) -> List[LazyArgument]:
|
|
return self.filtered_args(
|
|
positional=False, keyword=True, values=False, scalars=True
|
|
)
|