mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/76275 In preparation for addressing https://github.com/pytorch/pytorch/issues/73212 Diff was generated with: ``` git mv tools/codegen torchgen git grep -l 'tools.codegen' | xargs sed -i 's/tools.codegen/torchgen/g' sed -i "s/\${TOOLS_PATH}\/codegen/\${TORCH_ROOT}\/torchgen/g" caffe2/CMakeLists.txt ``` and a manual edits to: * tools/test/test_gen_backend_stubs.py * torchgen/build.bzl * torchgen/gen_backend_stubs.py aka this diff: ``` diff --git a/tools/test/test_gen_backend_stubs.py b/tools/test/test_gen_backend_stubs.py index 3dc26c6d2d..104054575e 100644 --- a/tools/test/test_gen_backend_stubs.py +++ b/tools/test/test_gen_backend_stubs.py @@ -9,7 +9,7 @@ from torchgen.gen_backend_stubs import run from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE # noqa: F401 path = os.path.dirname(os.path.realpath(__file__)) -gen_backend_stubs_path = os.path.join(path, '../torchgen/gen_backend_stubs.py') +gen_backend_stubs_path = os.path.join(path, '../../torchgen/gen_backend_stubs.py') # gen_backend_stubs.py is an integration point that is called directly by external backends. # The tests here are to confirm that badly formed inputs result in reasonable error messages. diff --git a/torchgen/build.bzl b/torchgen/build.bzl index ed04e35a43..d00078a3cf 100644 --- a/torchgen/build.bzl +++ b/torchgen/build.bzl @@ -1,6 +1,6 @@ def define_targets(rules): rules.py_library( - name = "codegen", + name = "torchgen", srcs = rules.glob(["**/*.py"]), deps = [ rules.requirement("PyYAML"), @@ -11,6 +11,6 @@ def define_targets(rules): rules.py_binary( name = "gen", - srcs = [":codegen"], + srcs = [":torchgen"], visibility = ["//visibility:public"], ) diff --git a/torchgen/gen_backend_stubs.py b/torchgen/gen_backend_stubs.py index c1a672a655..beee7a15e0 100644 --- a/torchgen/gen_backend_stubs.py +++ b/torchgen/gen_backend_stubs.py @@ -474,7 +474,7 @@ def run( ) -> None: # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py - pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute() + pytorch_root = pathlib.Path(__file__).parent.parent.absolute() template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") def make_file_manager(install_dir: str) -> FileManager: ``` run_all_fbandroid_tests Test Plan: sandcastle Reviewed By: albanD, ngimel Differential Revision: D35770317 fbshipit-source-id: 153ac4a7fef15b1e750812a90bfafdbc8f1ebcdf (cherry picked from commit c6d485d1d4648fa1c8a4c14c5bf3d8e899b9b4dd)
142 lines
5.7 KiB
Python
142 lines
5.7 KiB
Python
import dataclasses
|
|
import typing
|
|
import unittest
|
|
|
|
from tools.autograd import gen_autograd_functions
|
|
from tools.autograd import load_derivatives
|
|
import torchgen.model
|
|
|
|
|
|
class TestCreateDerivative(unittest.TestCase):
|
|
def test_named_grads(self) -> None:
|
|
schema = torchgen.model.FunctionSchema.parse(
|
|
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
|
|
)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
derivative = load_derivatives.create_derivative(
|
|
native_function,
|
|
formula="func_backward(grad_x, grad_y)",
|
|
var_names=(),
|
|
available_named_gradients=["grad_x", "grad_y"],
|
|
)
|
|
self.assertSetEqual(derivative.named_gradients, {"grad_x", "grad_y"})
|
|
|
|
def test_non_differentiable_output(self) -> None:
|
|
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
|
|
schema = torchgen.model.FunctionSchema.parse(specification)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
differentiability_info = load_derivatives.create_differentiability_info(
|
|
defn={
|
|
"name": specification,
|
|
"a": "grads[0]",
|
|
"b": "grads[2]",
|
|
},
|
|
functions_by_signature={schema.signature(): [native_function]},
|
|
functions_by_schema={specification: native_function},
|
|
op_counter=typing.Counter[str](),
|
|
)
|
|
|
|
self.assertSequenceEqual(
|
|
differentiability_info.available_named_gradients,
|
|
# grad_y is not present because y is a
|
|
# bool and thus not differentiable.
|
|
["grad_x", "grad_z"],
|
|
)
|
|
|
|
def test_indexed_grads(self) -> None:
|
|
schema = torchgen.model.FunctionSchema.parse(
|
|
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
|
|
)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
derivative = load_derivatives.create_derivative(
|
|
native_function,
|
|
formula="func_backward(grads[0], grads[1])",
|
|
var_names=(),
|
|
available_named_gradients=["grad_x", "grad_y"],
|
|
)
|
|
self.assertSetEqual(derivative.named_gradients, set())
|
|
|
|
def test_named_grads_and_indexed_grads(self) -> None:
|
|
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
|
|
schema = torchgen.model.FunctionSchema.parse(specification)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'illegally mixes use of "grad_RETURN_NAME"'
|
|
):
|
|
load_derivatives.create_differentiability_info(
|
|
defn={
|
|
"name": specification,
|
|
# Uh-oh, the derivatives reference gradients by
|
|
# name and by index.
|
|
"a": "grad_x",
|
|
"b": "grads[1]",
|
|
},
|
|
functions_by_signature={schema.signature(): [native_function]},
|
|
functions_by_schema={specification: native_function},
|
|
op_counter=typing.Counter[str](),
|
|
)
|
|
|
|
|
|
class TestGenAutogradFunctions(unittest.TestCase):
|
|
def test_non_differentiable_output_invalid_type(self) -> None:
|
|
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
|
|
schema = torchgen.model.FunctionSchema.parse(specification)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
differentiability_info = load_derivatives.create_differentiability_info(
|
|
defn={
|
|
"name": specification,
|
|
"a": "grad_x",
|
|
"b": "grad_z",
|
|
},
|
|
functions_by_signature={schema.signature(): [native_function]},
|
|
functions_by_schema={specification: native_function},
|
|
op_counter=typing.Counter[str](),
|
|
)
|
|
definition = gen_autograd_functions.process_function(
|
|
differentiability_info, gen_autograd_functions.FUNCTION_DEFINITION
|
|
)
|
|
# grad_z should map to grads[1], not grads[2] because output 1
|
|
# (y) is not differentiable.
|
|
assert "grad_z = grads[2]" not in definition
|
|
assert "grad_z = grads[1]" in definition
|
|
|
|
def test_non_differentiable_output_output_differentiability(self) -> None:
|
|
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y, Tensor z)"
|
|
schema = torchgen.model.FunctionSchema.parse(specification)
|
|
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
|
|
|
|
differentiability_info = load_derivatives.create_differentiability_info(
|
|
defn={
|
|
"name": specification,
|
|
"a": "grad_x",
|
|
"b": "grad_z",
|
|
"output_differentiability": [True, False, True],
|
|
},
|
|
functions_by_signature={schema.signature(): [native_function]},
|
|
functions_by_schema={specification: native_function},
|
|
op_counter=typing.Counter[str](),
|
|
)
|
|
definition = gen_autograd_functions.process_function(
|
|
differentiability_info, gen_autograd_functions.FUNCTION_DEFINITION
|
|
)
|
|
# grad_z should map to grads[1], not grads[2] because output 1
|
|
# (y) is not differentiable.
|
|
assert "grad_z = grads[2]" not in definition
|
|
assert "grad_z = grads[1]" in definition
|
|
|
|
|
|
# Represents the most basic NativeFunction. Use dataclasses.replace()
|
|
# to edit for use.
|
|
DEFAULT_NATIVE_FUNCTION, _ = torchgen.model.NativeFunction.from_yaml(
|
|
{"func": "func() -> bool"}, loc=torchgen.model.Location(__file__, 1)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|