Files
pytorch/tools/setup_helpers/generate_code.py
Edward Yang 36420b5e8c Rename tools/codegen to torchgen (#76275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76275

In preparation for addressing
https://github.com/pytorch/pytorch/issues/73212

Diff was generated with:

```
git mv tools/codegen torchgen
git grep -l 'tools.codegen' | xargs sed -i 's/tools.codegen/torchgen/g'
sed -i "s/\${TOOLS_PATH}\/codegen/\${TORCH_ROOT}\/torchgen/g" caffe2/CMakeLists.txt
```

and a manual edits to:

* tools/test/test_gen_backend_stubs.py
* torchgen/build.bzl
* torchgen/gen_backend_stubs.py

aka this diff:

```
 diff --git a/tools/test/test_gen_backend_stubs.py b/tools/test/test_gen_backend_stubs.py
index 3dc26c6d2d..104054575e 100644
 --- a/tools/test/test_gen_backend_stubs.py
+++ b/tools/test/test_gen_backend_stubs.py
@@ -9,7 +9,7 @@ from torchgen.gen_backend_stubs import run
 from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE  # noqa: F401

 path = os.path.dirname(os.path.realpath(__file__))
-gen_backend_stubs_path = os.path.join(path, '../torchgen/gen_backend_stubs.py')
+gen_backend_stubs_path = os.path.join(path, '../../torchgen/gen_backend_stubs.py')

 # gen_backend_stubs.py is an integration point that is called directly by external backends.
 # The tests here are to confirm that badly formed inputs result in reasonable error messages.
 diff --git a/torchgen/build.bzl b/torchgen/build.bzl
index ed04e35a43..d00078a3cf 100644
 --- a/torchgen/build.bzl
+++ b/torchgen/build.bzl
@@ -1,6 +1,6 @@
 def define_targets(rules):
     rules.py_library(
-        name = "codegen",
+        name = "torchgen",
         srcs = rules.glob(["**/*.py"]),
         deps = [
             rules.requirement("PyYAML"),
@@ -11,6 +11,6 @@ def define_targets(rules):

     rules.py_binary(
         name = "gen",
-        srcs = [":codegen"],
+        srcs = [":torchgen"],
         visibility = ["//visibility:public"],
     )
 diff --git a/torchgen/gen_backend_stubs.py b/torchgen/gen_backend_stubs.py
index c1a672a655..beee7a15e0 100644
 --- a/torchgen/gen_backend_stubs.py
+++ b/torchgen/gen_backend_stubs.py
@@ -474,7 +474,7 @@ def run(
 ) -> None:

     # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
-    pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
+    pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
     template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")

     def make_file_manager(install_dir: str) -> FileManager:
```

run_all_fbandroid_tests

Test Plan: sandcastle

Reviewed By: albanD, ngimel

Differential Revision: D35770317

fbshipit-source-id: 153ac4a7fef15b1e750812a90bfafdbc8f1ebcdf
(cherry picked from commit c6d485d1d4648fa1c8a4c14c5bf3d8e899b9b4dd)
2022-04-25 01:38:06 +00:00

227 lines
7.8 KiB
Python

import argparse
import os
import pathlib
import sys
import yaml
from typing import Any, List, Optional, cast
try:
# use faster C loader if available
from yaml import CSafeLoader as YamlLoader
except ImportError:
from yaml import SafeLoader as YamlLoader # type: ignore[misc]
source_files = {".py", ".cpp", ".h"}
NATIVE_FUNCTIONS_PATH = "aten/src/ATen/native/native_functions.yaml"
# TODO: This is a little inaccurate, because it will also pick
# up setup_helper scripts which don't affect code generation
def all_generator_source() -> List[str]:
r = []
for directory, _, filenames in os.walk("tools"):
for f in filenames:
if os.path.splitext(f)[1] in source_files:
full = os.path.join(directory, f)
r.append(full)
return sorted(r)
def generate_code(
ninja_global: Optional[str] = None,
native_functions_path: Optional[str] = None,
install_dir: Optional[str] = None,
subset: Optional[str] = None,
disable_autograd: bool = False,
force_schema_registration: bool = False,
operator_selector: Any = None,
) -> None:
from tools.autograd.gen_autograd import gen_autograd, gen_autograd_python
from tools.autograd.gen_annotated_fn_args import gen_annotated
from torchgen.selective_build.selector import SelectiveBuilder
# Build ATen based Variable classes
if install_dir is None:
install_dir = "torch/csrc"
python_install_dir = "torch/testing/_internal/generated"
else:
python_install_dir = install_dir
autograd_gen_dir = os.path.join(install_dir, "autograd", "generated")
for d in (autograd_gen_dir, python_install_dir):
os.makedirs(d, exist_ok=True)
autograd_dir = os.fspath(pathlib.Path(__file__).parent.parent / "autograd")
if subset == "pybindings" or not subset:
gen_autograd_python(
native_functions_path or NATIVE_FUNCTIONS_PATH,
autograd_gen_dir,
autograd_dir,
)
if operator_selector is None:
operator_selector = SelectiveBuilder.get_nop_selector()
if subset == "libtorch" or not subset:
gen_autograd(
native_functions_path or NATIVE_FUNCTIONS_PATH,
autograd_gen_dir,
autograd_dir,
disable_autograd=disable_autograd,
operator_selector=operator_selector,
)
if subset == "python" or not subset:
gen_annotated(
native_functions_path or NATIVE_FUNCTIONS_PATH,
python_install_dir,
autograd_dir,
)
def get_selector_from_legacy_operator_selection_list(
selected_op_list_path: str,
) -> Any:
with open(selected_op_list_path, "r") as f:
# strip out the overload part
# It's only for legacy config - do NOT copy this code!
selected_op_list = {
opname.split(".", 1)[0] for opname in yaml.load(f, Loader=YamlLoader)
}
# Internal build doesn't use this flag any more. Only used by OSS
# build now. Every operator should be considered a root operator
# (hence generating unboxing code for it, which is consistent with
# the current behaviour), and also be considered as used for
# training, since OSS doesn't support training on mobile for now.
#
is_root_operator = True
is_used_for_training = True
from torchgen.selective_build.selector import SelectiveBuilder
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
selected_op_list,
is_root_operator,
is_used_for_training,
)
return selector
def get_selector(
selected_op_list_path: Optional[str],
operators_yaml_path: Optional[str],
) -> Any:
# cwrap depends on pyyaml, so we can't import it earlier
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, root)
from torchgen.selective_build.selector import SelectiveBuilder
assert not (
selected_op_list_path is not None and operators_yaml_path is not None
), (
"Expected at most one of selected_op_list_path and "
+ "operators_yaml_path to be set."
)
if selected_op_list_path is None and operators_yaml_path is None:
return SelectiveBuilder.get_nop_selector()
elif selected_op_list_path is not None:
return get_selector_from_legacy_operator_selection_list(selected_op_list_path)
else:
return SelectiveBuilder.from_yaml_path(cast(str, operators_yaml_path))
def main() -> None:
parser = argparse.ArgumentParser(description="Autogenerate code")
parser.add_argument("--native-functions-path")
parser.add_argument("--ninja-global")
parser.add_argument("--install_dir")
parser.add_argument(
"--subset",
help='Subset of source files to generate. Can be "libtorch" or "pybindings". Generates both when omitted.',
)
parser.add_argument(
"--disable-autograd",
default=False,
action="store_true",
help="It can skip generating autograd related code when the flag is set",
)
parser.add_argument(
"--selected-op-list-path",
help="Path to the YAML file that contains the list of operators to include for custom build.",
)
parser.add_argument(
"--operators_yaml_path",
help="Path to the model YAML file that contains the list of operators to include for custom build.",
)
parser.add_argument(
"--force_schema_registration",
action="store_true",
help="force it to generate schema-only registrations for ops that are not"
"listed on --selected-op-list",
)
parser.add_argument(
"--gen_lazy_ts_backend",
action="store_true",
help="Enable generation of the torch::lazy TorchScript backend",
)
parser.add_argument(
"--per_operator_headers",
action="store_true",
help="Build lazy tensor ts backend with per-operator ATen headers, must match how ATen was built",
)
options = parser.parse_args()
generate_code(
options.ninja_global,
options.native_functions_path,
options.install_dir,
options.subset,
options.disable_autograd,
options.force_schema_registration,
# options.selected_op_list
operator_selector=get_selector(
options.selected_op_list_path, options.operators_yaml_path
),
)
if options.gen_lazy_ts_backend:
aten_path = os.path.dirname(os.path.dirname(options.native_functions_path))
ts_backend_yaml = os.path.join(aten_path, "native/ts_native_functions.yaml")
ts_native_functions = "torch/csrc/lazy/ts_backend/ts_native_functions.cpp"
ts_node_base = "torch/csrc/lazy/ts_backend/ts_node.h"
if options.install_dir is None:
options.install_dir = "torch/csrc"
lazy_install_dir = os.path.join(options.install_dir, "lazy/generated")
os.makedirs(lazy_install_dir, exist_ok=True)
assert os.path.isfile(
ts_backend_yaml
), f"Unable to access ts_backend_yaml: {ts_backend_yaml}"
assert os.path.isfile(
ts_native_functions
), f"Unable to access {ts_native_functions}"
from torchgen.gen_lazy_tensor import run_gen_lazy_tensor
from torchgen.dest.lazy_ir import GenTSLazyIR
run_gen_lazy_tensor(
aten_path=aten_path,
source_yaml=ts_backend_yaml,
backend_name="TorchScript",
output_dir=lazy_install_dir,
dry_run=False,
impl_path=ts_native_functions,
node_base="TsNode",
node_base_hdr=ts_node_base,
build_in_tree=True,
lazy_ir_generator=GenTSLazyIR,
per_operator_headers=options.per_operator_headers,
gen_forced_fallback_code=True,
)
if __name__ == "__main__":
main()