mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR looks big, but it's mostly just refactorings with a bit of dead code deletion. Exceptions are: - Some metric emissions were changed to comply with the new TD format - Some logging changes - We now run tests in three batches (highly_relevant, probably_relevant, unranked_relevance) instead of the previous two (prioritized and general) Refactorings done: - Moves all test reordering code to the new TD framework - Refactors run_test.py to cleanly support multiple levels of test priorities - Deletes some dead code that was originally written for logging Pull Request resolved: https://github.com/pytorch/pytorch/pull/107071 Approved by: https://github.com/clee2000, https://github.com/huydhn
333 lines
14 KiB
Python
333 lines
14 KiB
Python
import pathlib
|
|
import random
|
|
import sys
|
|
import unittest
|
|
from collections import defaultdict
|
|
from typing import Dict, List, Tuple
|
|
|
|
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent
|
|
try:
|
|
# using tools/ to optimize test run.
|
|
sys.path.append(str(REPO_ROOT))
|
|
from tools.testing.test_selections import calculate_shards, ShardedTest, THRESHOLD
|
|
except ModuleNotFoundError:
|
|
print("Can't import required modules, exiting")
|
|
exit(1)
|
|
|
|
|
|
class TestCalculateShards(unittest.TestCase):
|
|
tests: List[str] = [
|
|
"super_long_test",
|
|
"long_test1",
|
|
"long_test2",
|
|
"normal_test1",
|
|
"normal_test2",
|
|
"normal_test3",
|
|
"short_test1",
|
|
"short_test2",
|
|
"short_test3",
|
|
"short_test4",
|
|
"short_test5",
|
|
]
|
|
|
|
test_times: Dict[str, float] = {
|
|
"super_long_test": 55,
|
|
"long_test1": 22,
|
|
"long_test2": 18,
|
|
"normal_test1": 9,
|
|
"normal_test2": 7,
|
|
"normal_test3": 5,
|
|
"short_test1": 1,
|
|
"short_test2": 0.6,
|
|
"short_test3": 0.4,
|
|
"short_test4": 0.3,
|
|
"short_test5": 0.01,
|
|
}
|
|
|
|
def assert_shards_equal(
|
|
self,
|
|
expected_shards: List[Tuple[float, List[ShardedTest]]],
|
|
actual_shards: List[Tuple[float, List[ShardedTest]]],
|
|
) -> None:
|
|
for expected, actual in zip(expected_shards, actual_shards):
|
|
self.assertAlmostEqual(expected[0], actual[0])
|
|
self.assertListEqual(expected[1], actual[1])
|
|
|
|
def test_calculate_2_shards_with_complete_test_times(self) -> None:
|
|
expected_shards = [
|
|
(
|
|
60.0,
|
|
[
|
|
ShardedTest(name="super_long_test", shard=1, num_shards=1, time=55),
|
|
ShardedTest(name="normal_test3", shard=1, num_shards=1, time=5),
|
|
],
|
|
),
|
|
(
|
|
58.31,
|
|
[
|
|
ShardedTest(name="long_test1", shard=1, num_shards=1, time=22),
|
|
ShardedTest(name="long_test2", shard=1, num_shards=1, time=18),
|
|
ShardedTest(name="normal_test1", shard=1, num_shards=1, time=9),
|
|
ShardedTest(name="normal_test2", shard=1, num_shards=1, time=7),
|
|
ShardedTest(name="short_test1", shard=1, num_shards=1, time=1),
|
|
ShardedTest(name="short_test2", shard=1, num_shards=1, time=0.6),
|
|
ShardedTest(name="short_test3", shard=1, num_shards=1, time=0.4),
|
|
ShardedTest(name="short_test4", shard=1, num_shards=1, time=0.3),
|
|
ShardedTest(name="short_test5", shard=1, num_shards=1, time=0.01),
|
|
],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(2, self.tests, self.test_times)
|
|
)
|
|
|
|
def test_calculate_1_shard_with_complete_test_times(self) -> None:
|
|
expected_shards = [
|
|
(
|
|
118.31,
|
|
[
|
|
ShardedTest(name="super_long_test", shard=1, num_shards=1, time=55),
|
|
ShardedTest(name="long_test1", shard=1, num_shards=1, time=22),
|
|
ShardedTest(name="long_test2", shard=1, num_shards=1, time=18),
|
|
ShardedTest(name="normal_test1", shard=1, num_shards=1, time=9),
|
|
ShardedTest(name="normal_test2", shard=1, num_shards=1, time=7),
|
|
ShardedTest(name="normal_test3", shard=1, num_shards=1, time=5),
|
|
ShardedTest(name="short_test1", shard=1, num_shards=1, time=1),
|
|
ShardedTest(name="short_test2", shard=1, num_shards=1, time=0.6),
|
|
ShardedTest(name="short_test3", shard=1, num_shards=1, time=0.4),
|
|
ShardedTest(name="short_test4", shard=1, num_shards=1, time=0.3),
|
|
ShardedTest(name="short_test5", shard=1, num_shards=1, time=0.01),
|
|
],
|
|
)
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(1, self.tests, self.test_times)
|
|
)
|
|
|
|
def test_calculate_5_shards_with_complete_test_times(self) -> None:
|
|
expected_shards = [
|
|
(
|
|
55.0,
|
|
[ShardedTest(name="super_long_test", shard=1, num_shards=1, time=55)],
|
|
),
|
|
(22.0, [ShardedTest(name="long_test1", shard=1, num_shards=1, time=22)]),
|
|
(18.0, [ShardedTest(name="long_test2", shard=1, num_shards=1, time=18)]),
|
|
(
|
|
11.31,
|
|
[
|
|
ShardedTest(name="normal_test1", shard=1, num_shards=1, time=9),
|
|
ShardedTest(name="short_test1", shard=1, num_shards=1, time=1),
|
|
ShardedTest(name="short_test2", shard=1, num_shards=1, time=0.6),
|
|
ShardedTest(name="short_test3", shard=1, num_shards=1, time=0.4),
|
|
ShardedTest(name="short_test4", shard=1, num_shards=1, time=0.3),
|
|
ShardedTest(name="short_test5", shard=1, num_shards=1, time=0.01),
|
|
],
|
|
),
|
|
(
|
|
12.0,
|
|
[
|
|
ShardedTest(name="normal_test2", shard=1, num_shards=1, time=7),
|
|
ShardedTest(name="normal_test3", shard=1, num_shards=1, time=5),
|
|
],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(5, self.tests, self.test_times)
|
|
)
|
|
|
|
def test_calculate_2_shards_with_incomplete_test_times(self) -> None:
|
|
incomplete_test_times = {
|
|
k: v for k, v in self.test_times.items() if "test1" in k
|
|
}
|
|
expected_shards = [
|
|
(
|
|
22.0,
|
|
[
|
|
ShardedTest(name="long_test1", shard=1, num_shards=1, time=22),
|
|
ShardedTest(name="long_test2", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="normal_test3", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test3", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test5", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
(
|
|
10.0,
|
|
[
|
|
ShardedTest(name="normal_test1", shard=1, num_shards=1, time=9),
|
|
ShardedTest(name="short_test1", shard=1, num_shards=1, time=1),
|
|
ShardedTest(
|
|
name="super_long_test", shard=1, num_shards=1, time=None
|
|
),
|
|
ShardedTest(name="normal_test2", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test2", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test4", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(2, self.tests, incomplete_test_times)
|
|
)
|
|
|
|
def test_calculate_5_shards_with_incomplete_test_times(self) -> None:
|
|
incomplete_test_times = {
|
|
k: v for k, v in self.test_times.items() if "test1" in k
|
|
}
|
|
expected_shards = [
|
|
(
|
|
22.0,
|
|
[
|
|
ShardedTest(name="long_test1", shard=1, num_shards=1, time=22),
|
|
ShardedTest(name="normal_test2", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test5", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
(
|
|
9.0,
|
|
[
|
|
ShardedTest(name="normal_test1", shard=1, num_shards=1, time=9),
|
|
ShardedTest(name="normal_test3", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
(
|
|
1.0,
|
|
[
|
|
ShardedTest(name="short_test1", shard=1, num_shards=1, time=1),
|
|
ShardedTest(name="short_test2", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
(
|
|
0.0,
|
|
[
|
|
ShardedTest(
|
|
name="super_long_test", shard=1, num_shards=1, time=None
|
|
),
|
|
ShardedTest(name="short_test3", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
(
|
|
0.0,
|
|
[
|
|
ShardedTest(name="long_test2", shard=1, num_shards=1, time=None),
|
|
ShardedTest(name="short_test4", shard=1, num_shards=1, time=None),
|
|
],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(5, self.tests, incomplete_test_times)
|
|
)
|
|
|
|
def test_split_shards(self) -> None:
|
|
test_times: Dict[str, float] = {"test1": THRESHOLD, "test2": THRESHOLD}
|
|
expected_shards = [
|
|
(600.0, [ShardedTest(name="test1", shard=1, num_shards=1, time=THRESHOLD)]),
|
|
(600.0, [ShardedTest(name="test2", shard=1, num_shards=1, time=THRESHOLD)]),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(2, list(test_times.keys()), test_times)
|
|
)
|
|
|
|
test_times = {"test1": THRESHOLD * 4, "test2": THRESHOLD * 2.5}
|
|
expected_shards = [
|
|
(
|
|
2200.0,
|
|
[
|
|
ShardedTest(name="test1", shard=1, num_shards=4, time=600.0),
|
|
ShardedTest(name="test1", shard=3, num_shards=4, time=600.0),
|
|
ShardedTest(name="test2", shard=1, num_shards=3, time=500.0),
|
|
ShardedTest(name="test2", shard=3, num_shards=3, time=500.0),
|
|
],
|
|
),
|
|
(
|
|
1700.0,
|
|
[
|
|
ShardedTest(name="test1", shard=2, num_shards=4, time=600.0),
|
|
ShardedTest(name="test1", shard=4, num_shards=4, time=600.0),
|
|
ShardedTest(name="test2", shard=2, num_shards=3, time=500.0),
|
|
],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(2, list(test_times.keys()), test_times)
|
|
)
|
|
|
|
test_times = {"test1": THRESHOLD / 2, "test2": THRESHOLD}
|
|
expected_shards = [
|
|
(600.0, [ShardedTest(name="test2", shard=1, num_shards=1, time=THRESHOLD)]),
|
|
(
|
|
300.0,
|
|
[ShardedTest(name="test1", shard=1, num_shards=1, time=THRESHOLD / 2)],
|
|
),
|
|
]
|
|
self.assert_shards_equal(
|
|
expected_shards, calculate_shards(2, list(test_times.keys()), test_times)
|
|
)
|
|
|
|
def test_split_shards_random(self) -> None:
|
|
random.seed(120)
|
|
for _ in range(100):
|
|
num_shards = random.randint(1, 10)
|
|
num_tests = random.randint(1, 100)
|
|
random_times: Dict[str, float] = {
|
|
str(i): random.randint(0, THRESHOLD * 10) for i in range(num_tests)
|
|
}
|
|
|
|
shards = calculate_shards(
|
|
num_shards, list(random_times.keys()), random_times
|
|
)
|
|
|
|
times = [x[0] for x in shards]
|
|
max_diff = max(times) - min(times)
|
|
self.assertTrue(max_diff <= THRESHOLD)
|
|
|
|
all_sharded_tests = defaultdict(list)
|
|
for time, sharded_tests in shards:
|
|
self.assertEqual(time, sum(x.time for x in sharded_tests))
|
|
for sharded_test in sharded_tests:
|
|
all_sharded_tests[sharded_test.name].append(sharded_test)
|
|
|
|
self.assertListEqual(
|
|
sorted(random_times.keys()), sorted(all_sharded_tests.keys())
|
|
)
|
|
for test, sharded_tests in all_sharded_tests.items():
|
|
self.assertAlmostEqual(
|
|
random_times[test], sum(x.time or 0 for x in sharded_tests)
|
|
)
|
|
self.assertListEqual(
|
|
list(range(sharded_tests[0].num_shards)),
|
|
sorted(x.shard - 1 for x in sharded_tests),
|
|
)
|
|
|
|
def test_calculate_2_shards_against_optimal_shards(self) -> None:
|
|
random.seed(120)
|
|
for _ in range(100):
|
|
random_times = {k: random.random() * 10 for k in self.tests}
|
|
# all test times except first two
|
|
rest_of_tests = [
|
|
i
|
|
for k, i in random_times.items()
|
|
if k != "super_long_test" and k != "long_test1"
|
|
]
|
|
sum_of_rest = sum(rest_of_tests)
|
|
random_times["super_long_test"] = max(sum_of_rest / 2, max(rest_of_tests))
|
|
random_times["long_test1"] = sum_of_rest - random_times["super_long_test"]
|
|
# An optimal sharding would look like the below, but we don't need to compute this for the test:
|
|
# optimal_shards = [
|
|
# (sum_of_rest, ['super_long_test', 'long_test1']),
|
|
# (sum_of_rest, [i for i in self.tests if i != 'super_long_test' and i != 'long_test1']),
|
|
# ]
|
|
calculated_shards = calculate_shards(2, self.tests, random_times)
|
|
max_shard_time = max(calculated_shards[0][0], calculated_shards[1][0])
|
|
if sum_of_rest != 0:
|
|
# The calculated shard should not have a ratio worse than 7/6 for num_shards = 2
|
|
self.assertGreaterEqual(7.0 / 6.0, max_shard_time / sum_of_rest)
|
|
sorted_tests = sorted(self.tests)
|
|
sorted_shard_tests = sorted(
|
|
calculated_shards[0][1] + calculated_shards[1][1]
|
|
)
|
|
# All the tests should be represented by some shard
|
|
self.assertEqual(sorted_tests, [x.name for x in sorted_shard_tests])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|