mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-28 10:34:54 +08:00
156 lines
5.8 KiB
C++
156 lines
5.8 KiB
C++
#include "torch/csrc/autograd/python_engine.h"
|
|
|
|
#include "torch/csrc/autograd/engine.h"
|
|
#include "torch/csrc/THP.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/utils/auto_gil.h"
|
|
|
|
using namespace torch::autograd;
|
|
|
|
struct THPEngine {
|
|
PyObject_HEAD
|
|
};
|
|
|
|
struct PythonEngine : public Engine {
|
|
virtual void thread_main(ReadyQueue& queue) override {
|
|
// Create a PyThreadState, but release the GIL. This lets AutoGIL calls
|
|
// inside thread_main acquire the GIL without having to create a new
|
|
// PyThreadState each time.
|
|
AutoGIL gil;
|
|
AutoNoGIL no_gil;
|
|
Engine::thread_main(queue);
|
|
}
|
|
|
|
virtual void thread_on_exception(FunctionTask& task, std::exception& e) override {
|
|
auto python_err = dynamic_cast<python_error*>(&e);
|
|
if (python_err) {
|
|
python_err->persist();
|
|
}
|
|
Engine::thread_on_exception(task, e);
|
|
}
|
|
};
|
|
|
|
static PythonEngine engine;
|
|
|
|
PyObject *THPEngineClass = NULL;
|
|
|
|
// Main backward function
|
|
PyObject *THPEngine_run_backward(THPEngine *self, PyObject *args, PyObject *kwargs)
|
|
{
|
|
PyObject *variables = NULL;
|
|
PyObject *grad_variables = NULL;
|
|
unsigned char retain_variables = 0;
|
|
const char *accepted_kwargs[] = {"variables", "grad_variables",
|
|
"retain_variables", NULL};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OOb", (char**)accepted_kwargs,
|
|
&variables, &grad_variables, &retain_variables))
|
|
return NULL;
|
|
PyObject *retain_variables_obj = retain_variables ? Py_True : Py_False;
|
|
|
|
THPUtils_assert(retain_variables_obj == Py_True || retain_variables_obj == Py_False,
|
|
"retain_variables argument is expected to be a bool, but got %s",
|
|
THPUtils_typename(retain_variables_obj));
|
|
THPUtils_assert(PyTuple_Check(variables), "variables argument is expected to "
|
|
"be a tuple, but got %s", THPUtils_typename(variables));
|
|
THPUtils_assert(PyTuple_Check(grad_variables), "variables argument is "
|
|
"expected to be a tuple, but got %s", THPUtils_typename(grad_variables));
|
|
|
|
Py_ssize_t num_variables = PyTuple_GET_SIZE(variables);
|
|
Py_ssize_t num_gradients = PyTuple_GET_SIZE(grad_variables);
|
|
THPUtils_assert(num_variables == num_gradients, "got %ld variables and %ld "
|
|
"gradients", num_variables, num_gradients);
|
|
|
|
variable_list vars(num_variables);
|
|
tensor_list grads(num_variables);
|
|
for (int i = 0; i < num_variables; i++) {
|
|
PyObject *variable = PyTuple_GET_ITEM(variables, i);
|
|
THPUtils_assert(THPVariable_Check(variable), "element %d of variables "
|
|
"tuple is not a Variable", i);
|
|
vars[i] = ((THPVariable*)variable)->cdata;
|
|
|
|
PyObject *grad = PyTuple_GET_ITEM(grad_variables, i);
|
|
if (THPModule_isTensor(grad)) {
|
|
grads[i] = torch::createTensor(grad);
|
|
} else {
|
|
THPUtils_assert(grad == Py_None,
|
|
"element %d of gradients tuple is not a Tensor or None", i);
|
|
THPUtils_assert(!vars[i]->requires_grad,
|
|
"element %d of gradients tuple is None, but the corresponding Variable requires grad");
|
|
}
|
|
}
|
|
|
|
try {
|
|
AutoNoGIL no_gil;
|
|
engine.backward(vars, grads, retain_variables);
|
|
} catch (python_error &e) {
|
|
e.restore();
|
|
return nullptr;
|
|
} catch (const std::exception &e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *THPEngine_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
return type->tp_alloc(type, 0);
|
|
}
|
|
|
|
static struct PyMethodDef THPEngine_methods[] = {
|
|
{(char*)"run_backward", (PyCFunction)THPEngine_run_backward, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{NULL}
|
|
};
|
|
|
|
|
|
PyTypeObject THPEngineType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"torch._C._EngineBase", /* tp_name */
|
|
sizeof(THPEngine), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
0, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
NULL, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
THPEngine_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
THPEngine_new /* tp_new */
|
|
};
|
|
|
|
bool THPEngine_initModule(PyObject *module)
|
|
{
|
|
if (PyType_Ready(&THPEngineType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPEngineType);
|
|
PyModule_AddObject(module, "_ImperativeEngine", (PyObject *)&THPEngineType);
|
|
return true;
|
|
}
|