mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36027 Differential Revision: D20856462 Pulled By: pbelevich fbshipit-source-id: 156fc23d51d8125d41e96b36b3b1312f13040588
263 lines
9.4 KiB
C++
263 lines
9.4 KiB
C++
#include <torch/csrc/Generator.h>
|
|
|
|
#include <structmember.h>
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/CPUGeneratorImpl.h>
|
|
|
|
#include <TH/TH.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/autograd/generated/VariableType.h>
|
|
#include <torch/csrc/utils/tensor_types.h>
|
|
#include "torch/csrc/utils/python_arg_parser.h"
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
#ifdef USE_CUDA
|
|
#include <THC/THCTensorRandom.h>
|
|
#include <ATen/CUDAGeneratorImpl.h>
|
|
#endif
|
|
|
|
using namespace at;
|
|
using namespace torch;
|
|
|
|
PyObject *THPGeneratorClass = nullptr;
|
|
|
|
PyObject * THPGenerator_initDefaultGenerator(at::Generator cdata)
|
|
{
|
|
auto type = (PyTypeObject*)THPGeneratorClass;
|
|
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
|
|
if (!self) throw python_error();
|
|
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
|
|
self_->cdata = cdata;
|
|
return self.release();
|
|
}
|
|
|
|
static void THPGenerator_dealloc(THPGenerator* self)
|
|
{
|
|
self->cdata.set_pyobj(nullptr);
|
|
self->cdata.~Generator();
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
static PyObject * THPGenerator_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
static torch::PythonArgParser parser({
|
|
"Generator(Device device=None)"
|
|
});
|
|
torch::ParsedArgs<1> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto device = r.deviceWithDefault(0, at::Device(at::kCPU));
|
|
|
|
THPGeneratorPtr self((THPGenerator *)type->tp_alloc(type, 0));
|
|
#ifdef USE_CUDA
|
|
if (device.type() == at::kCPU) {
|
|
self->cdata = make_generator<CPUGeneratorImpl>();
|
|
} else if (device.type() == at::kCUDA){
|
|
self->cdata = make_generator<CUDAGeneratorImpl>(device.index());
|
|
} else {
|
|
AT_ERROR("Device type ", c10::DeviceTypeName(device.type()),
|
|
" is not supported for torch.Generator() api.");
|
|
}
|
|
#else
|
|
TORCH_CHECK(device.type() == at::kCPU,
|
|
"Device type ", c10::DeviceTypeName(device.type()),
|
|
" is not supported for torch.Generator() api.");
|
|
self->cdata = make_generator<CPUGeneratorImpl>();
|
|
#endif
|
|
return (PyObject*)self.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_getState(THPGenerator *self, PyObject *noargs)
|
|
{
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
Variable var = torch::empty({0}, at::device(at::kCPU).dtype(at::kByte));
|
|
if (self->cdata.device().type() == at::kCPU) {
|
|
THByteTensor_getRNGState(self->cdata, (THByteTensor*)(var.unsafeGetTensorImpl()));
|
|
} else {
|
|
#ifdef USE_CUDA
|
|
TORCH_INTERNAL_ASSERT(self->cdata.device().type() == at::kCUDA);
|
|
THCRandom_getRNGState(self->cdata, (THByteTensor*)(var.unsafeGetTensorImpl()));
|
|
#else
|
|
TORCH_INTERNAL_ASSERT(false, "PyTorch not compiled with CUDA");
|
|
#endif
|
|
}
|
|
return THPVariable_Wrap(std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_setState(THPGenerator *self, PyObject *_new_state)
|
|
{
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
if (!THPVariable_Check(_new_state)) {
|
|
throw TypeError("expected a torch.ByteTensor, but got %s", Py_TYPE(_new_state)->tp_name);
|
|
}
|
|
auto& tensor = ((THPVariable*)_new_state)->cdata;
|
|
if (tensor.layout() != kStrided || tensor.device().type() != kCPU || tensor.scalar_type() != kByte) {
|
|
auto type_name = torch::utils::options_to_string(tensor.options());
|
|
throw TypeError("expected a torch.ByteTensor, but got %s", type_name.c_str());
|
|
}
|
|
if (self->cdata.device().type() == at::kCPU) {
|
|
THByteTensor_setRNGState(self->cdata, (THByteTensor*)tensor.unsafeGetTensorImpl());
|
|
} else {
|
|
#ifdef USE_CUDA
|
|
TORCH_INTERNAL_ASSERT(self->cdata.device().type() == at::kCUDA);
|
|
THCRandom_setRNGState(self->cdata, (THByteTensor*)tensor.unsafeGetTensorImpl());
|
|
#else
|
|
TORCH_INTERNAL_ASSERT(false, "PyTorch not compiled with CUDA");
|
|
#endif
|
|
}
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_manualSeed(THPGenerator *self, PyObject *seed)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto generator = self->cdata;
|
|
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
|
|
"but got %s", THPUtils_typename(seed));
|
|
// See Note [Acquire lock when using random generators]
|
|
std::lock_guard<std::mutex> lock(generator.mutex());
|
|
generator.set_current_seed(THPUtils_unpackLong(seed));
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_seed(THPGenerator *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
// See Note [Acquire lock when using random generators]
|
|
std::lock_guard<std::mutex> lock(self->cdata.mutex());
|
|
uint64_t seed_val = self->cdata.seed();
|
|
return THPUtils_packUInt64(seed_val);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_initialSeed(THPGenerator *self, PyObject *noargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packUInt64(self->cdata.current_seed());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_get_device(THPGenerator *self, void *unused) {
|
|
HANDLE_TH_ERRORS
|
|
return THPDevice_New(self->cdata.device());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static struct PyGetSetDef THPGenerator_properties[] = {
|
|
{"device", (getter)THPGenerator_get_device, nullptr, nullptr, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
static PyMethodDef THPGenerator_methods[] = {
|
|
{"get_state", (PyCFunction)THPGenerator_getState, METH_NOARGS, nullptr},
|
|
{"set_state", (PyCFunction)THPGenerator_setState, METH_O, nullptr},
|
|
{"manual_seed", (PyCFunction)THPGenerator_manualSeed, METH_O, nullptr},
|
|
{"seed", (PyCFunction)THPGenerator_seed, METH_NOARGS, nullptr},
|
|
{"initial_seed", (PyCFunction)THPGenerator_initialSeed, METH_NOARGS, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
static struct PyMemberDef THPGenerator_members[] = {
|
|
{(char*)"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyTypeObject THPGeneratorType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C.Generator", /* tp_name */
|
|
sizeof(THPGenerator), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPGenerator_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
nullptr, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
nullptr, /* tp_traverse */
|
|
nullptr, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
THPGenerator_methods, /* tp_methods */
|
|
THPGenerator_members, /* tp_members */
|
|
THPGenerator_properties, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPGenerator_pynew, /* tp_new */
|
|
};
|
|
|
|
bool THPGenerator_init(PyObject *module)
|
|
{
|
|
THPGeneratorClass = (PyObject*)&THPGeneratorType;
|
|
if (PyType_Ready(&THPGeneratorType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPGeneratorType);
|
|
PyModule_AddObject(module, "Generator", (PyObject *)&THPGeneratorType);
|
|
return true;
|
|
}
|
|
|
|
void set_pyobj(const Generator& self, PyObject* pyobj) {
|
|
TORCH_CHECK(self.defined(), "cannot call set_pyobj() on undefined generator");
|
|
self.set_pyobj(pyobj);
|
|
}
|
|
|
|
PyObject* pyobj(const Generator& self) {
|
|
TORCH_CHECK(self.defined(), "cannot call pyobj() on undefined generator");
|
|
return self.pyobj();
|
|
}
|
|
|
|
PyObject * THPGenerator_Wrap(Generator gen)
|
|
{
|
|
if (!gen.defined()) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
if (auto obj = pyobj(gen)) {
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
return THPGenerator_NewWithVar((PyTypeObject *)THPGeneratorClass, std::move(gen));
|
|
}
|
|
|
|
// Creates a new Python object for a Generator. The Generator must not already
|
|
// have a PyObject* associated with it.
|
|
PyObject* THPGenerator_NewWithVar(PyTypeObject* type, Generator gen)
|
|
{
|
|
PyObject* obj = type->tp_alloc(type, 0);
|
|
if (obj) {
|
|
auto g = (THPGenerator*) obj;
|
|
new (&g->cdata) Generator(std::move(gen));
|
|
set_pyobj(g->cdata, obj);
|
|
}
|
|
return obj;
|
|
}
|