mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	Let's have some fun. Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828 Approved by: https://github.com/ezyang
		
			
				
	
	
		
			127 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <gtest/gtest.h>
 | 
						|
 | 
						|
#include <torch/jit.h>
 | 
						|
#include <torch/script.h>
 | 
						|
#include <torch/types.h>
 | 
						|
 | 
						|
#include <string>
 | 
						|
 | 
						|
TEST(TorchScriptTest, CanCompileMultipleFunctions) {
 | 
						|
  auto module = torch::jit::compile(R"JIT(
 | 
						|
      def test_mul(a, b):
 | 
						|
        return a * b
 | 
						|
      def test_relu(a, b):
 | 
						|
        return torch.relu(a + b)
 | 
						|
      def test_while(a, i):
 | 
						|
        while bool(i < 10):
 | 
						|
          a += a
 | 
						|
          i += 1
 | 
						|
        return a
 | 
						|
      def test_len(a : List[int]):
 | 
						|
        return len(a)
 | 
						|
    )JIT");
 | 
						|
  auto a = torch::ones(1);
 | 
						|
  auto b = torch::ones(1);
 | 
						|
 | 
						|
  ASSERT_EQ(1, module->run_method("test_mul", a, b).toTensor().item<int64_t>());
 | 
						|
 | 
						|
  ASSERT_EQ(
 | 
						|
      2, module->run_method("test_relu", a, b).toTensor().item<int64_t>());
 | 
						|
 | 
						|
  ASSERT_TRUE(
 | 
						|
      0x200 ==
 | 
						|
      module->run_method("test_while", a, b).toTensor().item<int64_t>());
 | 
						|
 | 
						|
  at::IValue list = c10::List<int64_t>({3, 4});
 | 
						|
  ASSERT_EQ(2, module->run_method("test_len", list).toInt());
 | 
						|
}
 | 
						|
 | 
						|
TEST(TorchScriptTest, TestNestedIValueModuleArgMatching) {
 | 
						|
  auto module = torch::jit::compile(R"JIT(
 | 
						|
      def nested_loop(a: List[List[Tensor]], b: int):
 | 
						|
        return torch.tensor(1.0) + b
 | 
						|
    )JIT");
 | 
						|
 | 
						|
  auto b = 3;
 | 
						|
 | 
						|
  torch::List<torch::Tensor> list({torch::rand({4, 4})});
 | 
						|
 | 
						|
  torch::List<torch::List<torch::Tensor>> list_of_lists;
 | 
						|
  list_of_lists.push_back(list);
 | 
						|
  module->run_method("nested_loop", list_of_lists, b);
 | 
						|
 | 
						|
  auto generic_list = c10::impl::GenericList(at::TensorType::get());
 | 
						|
  auto empty_generic_list =
 | 
						|
      c10::impl::GenericList(at::ListType::create(at::TensorType::get()));
 | 
						|
  empty_generic_list.push_back(generic_list);
 | 
						|
  module->run_method("nested_loop", empty_generic_list, b);
 | 
						|
 | 
						|
  auto too_many_lists = c10::impl::GenericList(
 | 
						|
      at::ListType::create(at::ListType::create(at::TensorType::get())));
 | 
						|
  too_many_lists.push_back(empty_generic_list);
 | 
						|
  try {
 | 
						|
    module->run_method("nested_loop", too_many_lists, b);
 | 
						|
    AT_ASSERT(false);
 | 
						|
  } catch (const c10::Error& error) {
 | 
						|
    AT_ASSERT(
 | 
						|
        std::string(error.what_without_backtrace())
 | 
						|
            .find("nested_loop() Expected a value of type 'List[List[Tensor]]'"
 | 
						|
                  " for argument 'a' but instead found type "
 | 
						|
                  "'List[List[List[Tensor]]]'") == 0);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
TEST(TorchScriptTest, TestDictArgMatching) {
 | 
						|
  auto module = torch::jit::compile(R"JIT(
 | 
						|
      def dict_op(a: Dict[str, Tensor], b: str):
 | 
						|
        return a[b]
 | 
						|
    )JIT");
 | 
						|
  c10::Dict<std::string, at::Tensor> dict;
 | 
						|
  dict.insert("hello", torch::ones({2}));
 | 
						|
  auto output = module->run_method("dict_op", dict, std::string("hello"));
 | 
						|
  ASSERT_EQ(1, output.toTensor()[0].item<int64_t>());
 | 
						|
}
 | 
						|
 | 
						|
TEST(TorchScriptTest, TestTupleArgMatching) {
 | 
						|
  auto module = torch::jit::compile(R"JIT(
 | 
						|
      def tuple_op(a: Tuple[List[int]]):
 | 
						|
        return a
 | 
						|
    )JIT");
 | 
						|
 | 
						|
  c10::List<int64_t> int_list({1});
 | 
						|
  auto tuple_generic_list = c10::ivalue::Tuple::create({int_list});
 | 
						|
 | 
						|
  // doesn't fail on arg matching
 | 
						|
  module->run_method("tuple_op", tuple_generic_list);
 | 
						|
}
 | 
						|
 | 
						|
TEST(TorchScriptTest, TestOptionalArgMatching) {
 | 
						|
  auto module = torch::jit::compile(R"JIT(
 | 
						|
      def optional_tuple_op(a: Optional[Tuple[int, str]]):
 | 
						|
        if a is None:
 | 
						|
          return 0
 | 
						|
        else:
 | 
						|
          return a[0]
 | 
						|
    )JIT");
 | 
						|
 | 
						|
  auto optional_tuple = c10::ivalue::Tuple::create({2, std::string("hi")});
 | 
						|
 | 
						|
  ASSERT_EQ(2, module->run_method("optional_tuple_op", optional_tuple).toInt());
 | 
						|
  ASSERT_EQ(
 | 
						|
      0, module->run_method("optional_tuple_op", torch::jit::IValue()).toInt());
 | 
						|
}
 | 
						|
 | 
						|
TEST(TorchScriptTest, TestPickle) {
 | 
						|
  torch::IValue float_value(2.3);
 | 
						|
 | 
						|
  // TODO: when tensors are stored in the pickle, delete this
 | 
						|
  std::vector<at::Tensor> tensor_table;
 | 
						|
  auto data = torch::jit::pickle(float_value, &tensor_table);
 | 
						|
 | 
						|
  torch::IValue ivalue = torch::jit::unpickle(data.data(), data.size());
 | 
						|
 | 
						|
  double diff = ivalue.toDouble() - float_value.toDouble();
 | 
						|
  double eps = 0.0001;
 | 
						|
  ASSERT_TRUE(diff < eps && diff > -eps);
 | 
						|
}
 |