Files
pytorch/test/export/test_experimental.py

408 lines
16 KiB
Python

# Owner(s): ["oncall: export"]
# flake8: noqa
import copy
import types
import unittest
from typing import Dict, List, Tuple
import torch
import torch._dynamo
from torch._dynamo.test_case import run_tests, TestCase
from torch._functorch.aot_autograd import aot_export_module
from torch.export import export
from torch.export.experimental import _export_forward_backward, _sticky_export
from torch.export.graph_signature import OutputKind
from torch.testing import FileCheck
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't supported")
class TestExperiment(TestCase):
def test_joint_basic(self) -> None:
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(3, 3)
self.loss = torch.nn.CrossEntropyLoss()
def forward(self, x):
return self.loss(
self.linear(x).softmax(dim=0), torch.tensor([1.0, 0.0, 0.0])
)
m = Module()
example_inputs = (torch.randn(3),)
m(*example_inputs)
with torch._export.config.patch(use_new_tracer_experimental=True):
ep = torch.export.export(m, example_inputs, strict=True)
joint_ep = _export_forward_backward(ep)
self.assertExpectedInline(
str(joint_ep.graph_module.code).strip(),
"""\
def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x):
view = torch.ops.aten.view.default(x, [1, 3]); x = None
permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None
addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None
view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None
_softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None
alias = torch.ops.aten.alias.default(_softmax)
clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None
_log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None
alias_1 = torch.ops.aten.alias.default(_log_softmax)
mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None
sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None
neg = torch.ops.aten.neg.default(sum_1); sum_1 = None
div = torch.ops.aten.div.Scalar(neg, 1); neg = None
full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format)
div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None
neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None
expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None
mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None
alias_2 = torch.ops.aten.alias.default(alias_1); alias_1 = None
exp = torch.ops.aten.exp.default(alias_2); alias_2 = None
sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True)
mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None
sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None
alias_3 = torch.ops.aten.alias.default(alias); alias = None
mul_3 = torch.ops.aten.mul.Tensor(sub, alias_3); sub = None
sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True)
mul_4 = torch.ops.aten.mul.Tensor(alias_3, sum_3); alias_3 = sum_3 = None
sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None
view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None
permute_1 = torch.ops.aten.permute.default(view_2, [1, 0])
mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None
permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None
sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None
view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None
permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None
return (div, permute_3, view_3)""",
)
ep = joint_ep.run_decompositions()
self.assertExpectedInline(
str(ep.graph_module.code).strip(),
"""\
def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x):
view = torch.ops.aten.view.default(x, [1, 3]); x = None
permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None
addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None
view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None
_softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None
alias = torch.ops.aten.alias.default(_softmax)
clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None
_log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None
alias_1 = torch.ops.aten.alias.default(_log_softmax)
mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None
sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None
neg = torch.ops.aten.neg.default(sum_1); sum_1 = None
div = torch.ops.aten.div.Scalar(neg, 1); neg = None
full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format)
div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None
neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None
expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None
mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None
alias_2 = torch.ops.aten.alias.default(alias_1); alias_1 = None
exp = torch.ops.aten.exp.default(alias_2); alias_2 = None
sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True)
mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None
sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None
alias_3 = torch.ops.aten.alias.default(alias); alias = None
mul_3 = torch.ops.aten.mul.Tensor(sub, alias_3); sub = None
sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True)
mul_4 = torch.ops.aten.mul.Tensor(alias_3, sum_3); alias_3 = sum_3 = None
sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None
view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None
permute_1 = torch.ops.aten.permute.default(view_2, [1, 0])
mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None
permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None
sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None
view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None
permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None
return (div, permute_3, view_3)""",
)
def test_joint_dynamic(self) -> None:
from torch.export import Dim
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.y = torch.nn.Parameter(torch.randn(3))
def forward(self, x):
x = torch.ones(x.shape[0], 3)
return (self.y + x).sum()
m = Module()
example_inputs = (torch.randn(3),)
m(*example_inputs)
ep = torch.export.export(
m, example_inputs, dynamic_shapes={"x": {0: Dim("x0")}}, strict=True
)
_export_forward_backward(ep)
def test_joint_cifar10_backwards(self) -> None:
import torch.nn as nn
import torch.nn.functional as F
# From Pytorch's CIFAR10 example:
# https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.loss = nn.CrossEntropyLoss()
def forward(self, x, labels):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return self.loss(x, labels)
net = Net()
x = torch.randn(4, 3, 32, 32)
labels = torch.ones(4, dtype=torch.int64)
inputs = (x, labels)
ep = export(net, inputs, strict=True)
ep = _export_forward_backward(ep)
def test_joint_loss_index(self):
class Foo(torch.nn.Module):
def __init__(self, index):
super().__init__()
self.l = torch.nn.Linear(4, 4)
self.index = index
def forward(self, x):
x = self.l(x)
x = x.sum()
if self.index == 0:
return x, -x.detach()
else:
return x.detach(), x
inputs = (torch.randn(4, 4),)
for i in [0, 1]:
ep = export(Foo(i), inputs, strict=True)
ep_joint = _export_forward_backward(ep, joint_loss_index=i)
for j, spec in enumerate(ep_joint.graph_signature.output_specs):
if i == j:
self.assertTrue(spec.kind == OutputKind.LOSS_OUTPUT)
else:
self.assertTrue(spec.kind != OutputKind.LOSS_OUTPUT)
def test_joint_buffer_input_mutations(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(4, 4)
self.register_buffer("buf", torch.randn(4))
self.loss = torch.nn.CrossEntropyLoss()
def forward(self, x, label):
x.add_(self.buf)
x = self.l(x)
self.buf.add_(2.0)
return self.loss(x, label)
inputs = (
torch.randn(4, 4),
torch.randint(0, 4, (4,)),
)
ep = export(Foo(), inputs)
ep_joint = _export_forward_backward(ep)
self.assertEqual(len(ep_joint.graph_signature.output_specs), 5)
self.assertEqual(
ep_joint.graph_signature.output_specs[0].kind,
OutputKind.BUFFER_MUTATION,
)
self.assertEqual(
ep_joint.graph_signature.output_specs[0].target,
"buf",
)
self.assertEqual(
ep_joint.graph_signature.output_specs[1].kind,
OutputKind.USER_INPUT_MUTATION,
)
self.assertEqual(
ep_joint.graph_signature.output_specs[1].target,
"x",
)
self.assertEqual(
ep_joint.graph_signature.output_specs[2].kind,
OutputKind.LOSS_OUTPUT,
)
def test_sticky_export(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear(x)
class Pipeline:
def __init__(self, model):
self.model = model
def generate(self, *args, **kwargs):
return self.model(*args, **kwargs)
inp = torch.randn(4, 4)
p = Pipeline(Model())
orig_forward = p.model.forward
p.model.forward = _sticky_export(p.model.forward)
res = p.generate(inp)
p.model.forward = orig_forward
res2 = p.generate(inp)
self.assertTrue(torch.allclose(res, res2))
def test_sticky_export_dynamic(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, x):
if x.shape[0] < 5:
return self.linear(x)
return x.sin()
class Pipeline:
def __init__(self, model):
self.model = model
def generate(self, *args, **kwargs):
return self.model(*args, **kwargs)
inp = torch.randn(4, 4)
def callback(*args, **kwargs):
# I think it is bit weird to use the forward arg name here, so
# lets just use ShapeCollections
flat_args, _ = torch.utils._pytree.tree_flatten((args, kwargs))
collections = torch.export.ShapesCollection()
for arg in flat_args:
if isinstance(arg, torch.Tensor):
collections[arg] = {
i: torch.export.Dim.AUTO for i in range(len(arg.shape))
}
return collections
p = Pipeline(Model())
p.model.forward = _sticky_export(
p.model.forward, dynamic_shapes_callback=callback
)
_ = p.generate(inp)
self.assertExpectedInline(
str(p.model.forward._exported_artifact.code).strip(),
"""\
def forward(self, x):
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
linear_weight = self.linear.weight
linear_bias = self.linear.bias
_guards_fn = self._guards_fn(x); _guards_fn = None
linear = torch.ops.aten.linear.default(x, linear_weight, linear_bias); x = linear_weight = linear_bias = None
return pytree.tree_unflatten((linear,), self._out_spec)""",
)
def test_sticky_export_nested_inp(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, *, inputs):
return self.linear(inputs[0]) + self.linear(inputs[1])
class Pipeline:
def __init__(self, model):
self.model = model
def generate(self, *, input_tensor, input_tensor2):
inputs = [input_tensor, input_tensor2]
return self.model(inputs=inputs)
inp = torch.randn(4, 4)
inp2 = torch.randn(4, 4)
p = Pipeline(Model())
orig_forward = p.model.forward
p.model.forward = _sticky_export(p.model.forward)
res = p.generate(input_tensor=inp, input_tensor2=inp2)
p.model.forward = orig_forward
res2 = p.generate(input_tensor=inp, input_tensor2=inp2)
self.assertTrue(torch.allclose(res, res2))
def test_export_add_in_out_info(self):
class Foo(torch.nn.Module):
def forward(self, dct, lst, bleh):
x = dct["a"] * lst[1][0]
y = dct["b"] * lst[0]
out_dict = {}
# Mutate and get a new entry in there
lst_copy = lst.copy()
lst_copy.append(lst[0])
out_dict["a"] = x
out_dict["b"] = y
return (
dct["a"],
out_dict["b"],
bleh,
lst_copy[-1],
out_dict["a"],
[5, 6],
)
dct = {"a": torch.randn(2, 3), "b": torch.randn(2, 3)}
lst = [torch.randn(2, 3), [torch.randn(2, 3), torch.randn(2, 3)]]
export_inputs = ((dct, lst, 56), {})
eager_inputs = copy.deepcopy(export_inputs)
from torch._dynamo.functional_export import _dynamo_graph_capture_for_export
graph_module = _dynamo_graph_capture_for_export(Foo())(
*export_inputs[0], **export_inputs[1]
)
res_export = graph_module(*export_inputs[0], **export_inputs[1])
res_eager = Foo()(*eager_inputs[0], **eager_inputs[1])
self.assertEqual(res_export, res_eager)
def test_export_leaf(self):
class Foo(torch.nn.Module):
def forward(self, x):
return x.sin()
export_inputs = ((torch.randn(4, 4),), {})
eager_inputs = copy.deepcopy(export_inputs)
from torch._dynamo.functional_export import _dynamo_graph_capture_for_export
graph_module = _dynamo_graph_capture_for_export(Foo())(
*export_inputs[0], **export_inputs[1]
)
res_export = graph_module(*export_inputs[0], **export_inputs[1])
res_eager = Foo()(*eager_inputs[0], **eager_inputs[1])
self.assertEqual(res_export, res_eager)
if __name__ == "__main__":
run_tests()