Files
pytorch/torch/_dynamo/variables/torch_function.py

698 lines
25 KiB
Python

# mypy: ignore-errors
"""TorchDynamo support for __torch_function__ tensor subclasses.
This module implements support for tensor subclasses with __torch_function__ overrides.
A tensor subclass instance is represented as a TensorWithTFOverrideVariable, which handles
dispatching __torch_function__ on attribute accesses, method calls, and torch API calls.
Unsupported features:
- Triggering __torch_function__ on tensor subclass non-tensor custom attributes
- Graph breaking on mutating guardable tensor properties within a __torch_function__ context
(can cause excessive recompiles in certain cases)
- Matching exact eager behavior of ignoring __torch_function__ objects in non-tensor
argument positions of Torch API calls
Supported features:
- Static method implementations of __torch_function__ on custom objects (triggers on torch
API calls with the object as any argument)
- Triggering __torch_function__ on torch API calls with tensor subclass arguments
- __torch_function__ calls on base tensor attribute access and method calls for tensor
subclass instances
- Matches dispatch ordering behavior of eager __torch_function__ with subclass/object
arguments in any position
See https://docs.google.com/document/d/1WBxBSvW3NXhRp9ncmtokJloMLCtF4AYNhJaffvHe8Kw/edit#heading=h.vacn73lozd9w
for more information on the design.
"""
import collections
import contextlib
import functools
import inspect
import operator
from typing import TYPE_CHECKING
import torch._C
import torch.utils._pytree as pytree
from torch._guards import Source
from torch.overrides import (
_get_overloaded_args,
get_default_nowrap_functions,
TorchFunctionMode,
)
from torch.utils._device import DeviceContext
from .. import graph_break_hints
from ..exc import unimplemented_v2
from ..guards import GuardBuilder, install_guard
from ..polyfills import NoEnterTorchFunctionMode
from ..source import AttrSource, GlobalSource, TorchFunctionModeStackSource, TypeSource
from ..utils import (
class_has_getattribute,
clear_torch_function_mode_stack,
get_safe_global_name,
has_torch_function,
is_tensor_base_attr_getter,
set_torch_function_mode_stack,
)
from .base import VariableTracker
from .constant import ConstantVariable
from .ctx_manager import GenericContextWrappingVariable
from .functions import UserFunctionVariable, UserMethodVariable
from .lazy import LazyVariableTracker
from .lists import TupleVariable
from .tensor import TensorSubclassVariable, TensorVariable
from .user_defined import UserDefinedObjectVariable
if TYPE_CHECKING:
from torch._dynamo.codegen import PyCodegen
from torch._dynamo.symbolic_convert import InstructionTranslator
bin_ops = [
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.lt,
operator.gt,
operator.ge,
operator.le,
operator.ne,
operator.eq,
operator.sub,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
]
bin_int_ops = [
operator.and_,
operator.or_,
operator.xor,
operator.iand,
operator.ixor,
operator.ior,
]
un_int_ops = [operator.invert]
tensor_and_int_ops = [
operator.lshift,
operator.rshift,
operator.ilshift,
operator.irshift,
operator.getitem,
]
un_ops = [
operator.abs,
operator.pos,
operator.neg,
operator.not_, # Note: this has a local scalar dense call
operator.length_hint,
]
banned_attrs = [
fn.__self__.__name__
for fn in get_default_nowrap_functions()
if is_tensor_base_attr_getter(fn)
]
@functools.cache
def get_prev_stack_var_name():
from ..bytecode_transformation import unique_id
return unique_id("___prev_torch_function_mode_stack")
# Used to clear/restore the python torch function mode stack and temporarily restore it as needed
class TorchFunctionModeStackStateManager:
def __init__(self):
self.stack = []
def __enter__(self):
self.stack = torch.overrides._get_current_function_mode_stack()
clear_torch_function_mode_stack()
def __exit__(self, exc_type, exc_value, traceback):
set_torch_function_mode_stack(self.stack)
self.stack = []
@contextlib.contextmanager
def temp_restore_stack(self):
prev = torch.overrides._get_current_function_mode_stack()
set_torch_function_mode_stack(self.stack)
try:
yield
finally:
set_torch_function_mode_stack(prev)
torch_function_mode_stack_state_mgr = TorchFunctionModeStackStateManager()
class SymbolicTorchFunctionState:
def __init__(self, py_stack):
# This is annoyingly complicated because of how the torch function subclass + mode C API was designed
# There are two exposed C knobs here as contexts: torch._C.DisableTorchFunction and torch._C.DisableTorchFunctionSubclass
# These are their definitions:
# 1) torch._C._is_torch_function_enabled indicates that neither of the above knobs have been entered
# (if either are entered, this will be False)
# 2) torch._C._is_torch_function_mode_enabled indicates that either the torch mode stack is empty OR
# torch._C.DisableTorchFunction has been entered
# To disambiguate these and keep myself sane I added a C API to check whether all torch function
# concepts (modes and subclasses) are enabled.
# This only returns true iff we have not entered torch._C.DisableTorchFunction and allows us to separate
# the stack length from the enablement state of torch function modes.
# This is important because now if a mode is pushed while dynamo is tracing, we know whether
# or not torch function modes are enabled and whether we should trace it.
self.torch_function_subclass_enabled = torch._C._is_torch_function_enabled()
# This differs from the C API of the same name
# this will only be false iff we have entered torch._C.DisableTorchFunction
# and does not take into account the mode stack length, while the C API bundles these
# two concepts
self.torch_function_mode_enabled = (
not torch._C._is_torch_function_all_disabled()
)
self.cur_mode = None
TorchFunctionModeStackVariable.reset()
self.mode_stack: collections.deque[TorchFunctionModeVariable] = (
collections.deque()
)
for i, val in enumerate(py_stack):
self.mode_stack.append(
LazyVariableTracker.create(val, source=TorchFunctionModeStackSource(i))
)
def in_torch_function_mode(self):
return len(self.mode_stack) > 0
def pop_torch_function_mode(self):
return self.mode_stack.pop()
def push_torch_function_mode(self, mode_var):
self.mode_stack.append(mode_var)
def call_torch_function_mode(self, tx, fn, types, args, kwargs):
with self._pop_mode_for_inlining() as cur_mode:
return cur_mode.call_torch_function(tx, fn, types, args, kwargs)
@contextlib.contextmanager
def _pop_mode_for_inlining(self):
old_mode = self.cur_mode
self.cur_mode = self.pop_torch_function_mode()
try:
yield self.cur_mode
finally:
mode = self.cur_mode
self.cur_mode = old_mode
self.push_torch_function_mode(mode)
class TorchFunctionModeStackVariable(VariableTracker):
"""Fake VT to use as a dummy object, indicating the presence of torch function mode stack mutation"""
# singleton value representing the global torch function mode stack
# singleton (it exists in C++)
stack_value_singleton = object()
# offset is used to track if we have inserted/removed a
# device context which is always placed at the bottom of the stack
# if a device context is inserted, the graph will run this mutation
# so when we want to reconstruct any other modes on the stack
# their indices should be shifted right by 1 (+1)
# Conversely, if there was a device context on the stack, and the graph
# mutates the stack to remove that context (set default device to None)
# each of the indices of other modes should be shifted left by 1 (-1)
offset = 0
def __init__(self, source, symbolic_stack):
self.source = source
self.symbolic_stack = symbolic_stack
@classmethod
def reset(cls):
cls.offset = 0
@classmethod
def register_mutation(cls, tx: "InstructionTranslator"):
if cls.stack_value_singleton not in tx.output.side_effects:
var = cls(
source=Source(),
symbolic_stack=tx.symbolic_torch_function_state.mode_stack,
)
tx.output.side_effects.track_mutable(cls.stack_value_singleton, var)
tx.output.side_effects.mutation(var)
@classmethod
def register_device_context_insertion(cls, tx: "InstructionTranslator"):
stack = tx.symbolic_torch_function_state.mode_stack
if stack and cls.is_device_context(stack[0]):
return
else:
cls.offset += 1
stack.insert(
0,
TorchFunctionModeVariable(
None, source=TorchFunctionModeStackSource(-cls.offset)
),
)
@classmethod
def clear_default_device(cls, tx: "InstructionTranslator"):
stack = tx.symbolic_torch_function_state.mode_stack
if stack and cls.is_device_context(stack[0]):
stack.popleft()
cls.offset -= 1
@staticmethod
def is_device_context(var):
return isinstance(var.value, DeviceContext) or var.value is None
@classmethod
def get_mode_index(cls, ind):
return ind + cls.offset
class TorchFunctionModeVariable(GenericContextWrappingVariable):
@staticmethod
def is_supported_torch_function_mode(ty):
# Supported in this sense means we can support graph breaks under the
# context.
# We are able to trace custom modes but if there are graph breaks under them
# and they have a custom __enter__/__exit__ we don't handle this for the
# same reason we don't handle generic context managers: there may be side effects
# that are now affected by executing the function across two frames instead of one
# Today we support the enter/exit of the default TorchFunctionMode as well as
# DeviceContext (which is used for set_default_device)
return issubclass(ty, (NoEnterTorchFunctionMode, DeviceContext)) or (
not class_has_getattribute(ty)
and inspect.getattr_static(ty, "__enter__") == TorchFunctionMode.__enter__
and inspect.getattr_static(ty, "__exit__") == TorchFunctionMode.__exit__
)
def __init__(self, value, source=None, **kwargs):
if value is not None:
super().__init__(value, **kwargs)
self.value = value
self.cm_obj = value # needed for BC with calling enter from CM code
self.source = source
def reconstruct(self, codegen: "PyCodegen"):
# This shouldn't be called unless we have a source
assert self.source
self.source.reconstruct(codegen)
def module_name(self):
return self.value.__module__
def fn_name(self):
return type(self.value).__name__
def python_type(self):
return type(self.value)
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
return call_torch_function(
tx,
get_torch_function_fn(tx, self),
fn,
types,
args,
kwargs,
)
def enter(self, tx):
from .torch import TorchInGraphFunctionVariable
if isinstance(self.value, NoEnterTorchFunctionMode):
return ConstantVariable.create(None)
TorchInGraphFunctionVariable(
torch._C._push_on_torch_function_stack
).call_function(tx, [self], {})
return ConstantVariable.create(None)
def exit(self, tx: "InstructionTranslator", *args):
from .torch import TorchInGraphFunctionVariable
TorchInGraphFunctionVariable(torch._C._pop_torch_function_stack).call_function(
tx, [], {}
)
return ConstantVariable.create(None)
def reconstruct_type(self, codegen: "PyCodegen"):
ty = NoEnterTorchFunctionMode
codegen(
AttrSource(
codegen.tx.import_source(ty.__module__),
ty.__name__,
)
)
def supports_graph_breaks(self):
return True
def exit_on_graph_break(self):
return False
def _get_all_args(args, kwargs):
return _flatten_vts(pytree.arg_tree_leaves(*args, **kwargs))
def _flatten_vts(vts):
from collections import deque
from .dicts import ConstDictVariable
from .lists import ListVariable
vts = deque(vts)
output = []
while vts:
vt = vts.popleft()
if not vt.is_realized() and vt.peek_type() in (dict, list, tuple):
vt.realize()
if vt.is_realized():
if isinstance(vt, ListVariable):
vts.extend(vt.items)
continue
elif isinstance(vt, ConstDictVariable):
vts.extend(vt.items.values())
continue
output.append(vt)
return output
def _get_subclass_type(var):
assert isinstance(var, (TensorWithTFOverrideVariable, UserDefinedObjectVariable))
return var.python_type()
def _get_subclass_type_var(tx: "InstructionTranslator", var):
assert isinstance(var, (TensorWithTFOverrideVariable, UserDefinedObjectVariable))
if isinstance(var, TensorWithTFOverrideVariable):
return var.class_type_var(tx)
elif isinstance(var, UserDefinedObjectVariable):
source = var.source and TypeSource(var.source)
return VariableTracker.build(tx, var.python_type(), source)
def _is_attr_overridden(tx: "InstructionTranslator", var, name):
import torch
overridden = False
try:
attr_val = inspect.getattr_static(var.python_type(), name)
overridden |= attr_val != getattr(torch.Tensor, name)
except AttributeError:
pass
return overridden
def call_torch_function(tx, torch_function_var, fn, types, args, kwargs):
# This emulates calling __torch_function__, which has a signature
# def __torch_function__(cls, func, types, args=(), kwargs=None):
#
# Also notice the `cls` is not explicitly passed in the reference
# implementations:
# 1. https://github.com/pytorch/pytorch/blob/8d81806211bc3c0ee6c2ef235017bacf1d775a85/torch/csrc/utils/python_arg_parser.cpp#L368-L374 # noqa: B950
# 2. https://github.com/pytorch/pytorch/blob/8d81806211bc3c0ee6c2ef235017bacf1d775a85/torch/overrides.py#L1741-L1743
tf_args = [
fn,
types,
VariableTracker.build(tx, tuple(args)),
VariableTracker.build(tx, kwargs),
]
return torch_function_var.call_function(tx, tf_args, {})
def get_torch_function_fn(tx: "InstructionTranslator", vt):
# The underlying function could be a classmethod, staticmethod, regular
# function or a function with C-implementation. It doesn't matter as long as
# they satisfy the calling convention in `call_torch_function`.
from .builtin import BuiltinVariable
args = [vt, ConstantVariable("__torch_function__")]
func_vt = BuiltinVariable(getattr).call_function(tx, args, {})
return func_vt
def can_dispatch_torch_function(tx: "InstructionTranslator", args, kwargs):
has_overridden_args = any(
has_torch_function(arg) for arg in _get_all_args(args, kwargs)
)
tf_state = tx.symbolic_torch_function_state
return (has_overridden_args and tf_state.torch_function_subclass_enabled) or (
tf_state.torch_function_mode_enabled and tf_state.in_torch_function_mode()
)
def dispatch_torch_function(tx: "InstructionTranslator", fn, args, kwargs):
"""Gathers all args that are TensorWithTFOverrideVariable and dispatches based on the ordering in _get_overloaded_args"""
all_args = _get_all_args(args, kwargs)
overloaded_args = _get_overloaded_args(
[arg for arg in all_args if has_torch_function(arg)],
_get_subclass_type,
)
types = TupleVariable([_get_subclass_type_var(tx, arg) for arg in overloaded_args])
if tx.symbolic_torch_function_state.in_torch_function_mode():
res = tx.symbolic_torch_function_state.call_torch_function_mode(
tx, fn, types, args, kwargs
)
if not (isinstance(res, ConstantVariable) and res.value is NotImplemented):
return res
for arg in overloaded_args:
res = arg.call_torch_function(
tx,
fn,
types,
args,
kwargs,
)
if not (isinstance(res, ConstantVariable) and res.value is NotImplemented):
return res
unimplemented_v2(
gb_type="All __torch_function__ overrides returned NotImplemented due to TypeError from user code",
context=f"{fn=}, {args=}, {kwargs=}",
explanation=f"All __torch_function__ overrides for for function {fn} returned NotImplemented",
hints=[
*graph_break_hints.USER_ERROR,
],
)
class TensorWithTFOverrideVariable(TensorVariable):
"""
Represents a tensor subclass instance with a __torch_function__ override.
"""
@classmethod
def from_tensor_var(cls, tx, tensor_var, class_type, cls_source):
# [Note: __torch_function__] coerce `tensor_var` into a
# TensorWithTFOverrideVariable. In eager, this is just a type change.
import torch
# This simulates shallow-copying the tensor object.
kwargs = dict(tensor_var.__dict__)
input_tensor_type = kwargs.pop("class_type")
assert input_tensor_type in (torch.Tensor, torch.nn.Parameter), (
f"invalid class type {input_tensor_type} in TensorWithTFOverrideVariable.from_tensor_var"
)
var = cls(class_type=class_type, **kwargs)
var.install_global(tx)
return var
def install_global(self, tx):
# stash the subclass type to rewrap an output tensor if needed
# this is needed because the actual type needs to be available
# each time the compiled artifact is run and outputs a wrapped tensor.
if self.global_mangled_class_name(tx) not in tx.output.global_scope:
# Safe because global_mangled_class_name figures it out
tx.output.install_global_unsafe(
self.global_mangled_class_name(tx), self.class_type
)
def python_type(self):
return self.class_type
def class_type_var(self, tx):
return TensorSubclassVariable(
self.class_type, source=GlobalSource(self.global_mangled_class_name(tx))
)
def global_mangled_class_name(self, tx):
return get_safe_global_name(
tx, f"__subclass_{self.class_type.__name__}", self.class_type
)
def var_getattr(self, tx: "InstructionTranslator", name):
# [Note: __torch_function__] We currently only support attributes that are defined on
# base tensors, custom attribute accesses will graph break.
import torch
# I think only `_base` is breaking because we aren't modelling view
# relationship perfectly in some scenarios.
if name in banned_attrs:
unimplemented_v2(
gb_type="Unsupported tensor subclass attribute access",
context=f"{name}",
explanation="`torch.compile` currently can't trace this",
hints=[
f"Avoid accessing {name} of tensor subclass in torch.compile region",
*graph_break_hints.SUPPORTABLE,
],
)
# Handle non-overridden attributes inherited from `torch.Tensor`.
attr_is_overridden = _is_attr_overridden(tx, self, name)
if (
hasattr(torch.Tensor, name)
and not attr_is_overridden
and not inspect.ismethoddescriptor(getattr(torch.Tensor, name))
):
args, kwargs = [self], {}
if can_dispatch_torch_function(tx, args, kwargs):
if self.source:
install_guard(
AttrSource(
AttrSource(self.source, "__class__"), name
).make_guard(GuardBuilder.FUNCTION_MATCH)
)
get_fn = VariableTracker.build(tx, getattr(torch.Tensor, name).__get__)
return self.call_torch_function(
tx,
get_fn,
TupleVariable([self.class_type_var(tx)]),
args,
kwargs,
)
else:
# `TensorVariable.var_getattr` doesn't handle user-defined
# function/attribute well, so we explicitly handle them here.
#
# TODO move this logic into `TensorVariable`, or try to merge it
# with similar logic in `UserDefinedObjectVariable`.
try:
attr = inspect.getattr_static(self.class_type, name)
except AttributeError:
pass
else:
import types
cls_source = GlobalSource(self.global_mangled_class_name(tx))
attr_source = AttrSource(cls_source, name)
if isinstance(attr, types.FunctionType):
install_guard(attr_source.make_guard(GuardBuilder.FUNCTION_MATCH))
return UserMethodVariable(attr, self)
elif isinstance(attr, property):
getter_source = AttrSource(attr_source, "fget")
getter = attr.fget
getter_var = UserFunctionVariable(getter, source=getter_source)
return getter_var.call_function(tx, [self], {})
elif isinstance(attr, classmethod):
return UserMethodVariable(
attr.__func__, self.class_type_var(tx), source=attr_source
)
elif attr_is_overridden:
unimplemented_v2(
gb_type="Unsupported tensor subclass overridden attribute access",
context=f"{name}",
explanation="`torch.compile` only support tracing certain types of overridden tensor subclass attributes",
hints=[
f"Avoid accessing {name} of tensor subclass in torch.compile region",
f"Renaming attribute `{name}` of type {self.class_type}",
*graph_break_hints.SUPPORTABLE,
],
)
return super().var_getattr(tx, name)
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
# NOTE this assumes `__torch_function__` isn't modified during tracing.
if not hasattr(self, "torch_function_fn"):
self.torch_function_fn = get_torch_function_fn(tx, self)
return call_torch_function(
tx,
self.torch_function_fn,
fn,
types,
args,
kwargs,
)
def call_method(
self,
tx,
name,
args: "list[VariableTracker]",
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
# This code block implements inlining the __torch_function__ override
# of `call_method`.
tf_args = [self] + args
if can_dispatch_torch_function(tx, tf_args, kwargs):
import torch
if _is_attr_overridden(tx, self, name):
unimplemented_v2(
gb_type="Tensor subclass overridden method call",
context=f"{name}",
explanation="`torch.compile` currently can't trace this",
hints=[
f"Avoid calling {name} of tensor subclass in torch.compile region",
f"Renaming method `{name}` of type {self.class_type}",
*graph_break_hints.SUPPORTABLE,
],
)
# [Note: __torch_function__] Currently we only support methods that are defined on tensor
# we will graph break in other cases this will need a bigger overhaul of extracting methods/comparing them for equality
# We've established with the above check that the method is not overridden, so we guard that the method is the same
# as the impl defined on tensor and retrieve it
if self.source:
source = AttrSource(AttrSource(self.source, "__class__"), name)
value = inspect.getattr_static(self.python_type(), name)
else:
source = None
value = getattr(torch.Tensor, name)
func_var = VariableTracker.build(tx, value, source)
return dispatch_torch_function(tx, func_var, tf_args, kwargs)
else:
return super().call_method(tx, name, args, kwargs)