mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Let's have some fun. Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828 Approved by: https://github.com/ezyang
242 lines
7.8 KiB
C++
242 lines
7.8 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <ATen/core/Tensor.h>
|
|
#include <c10/util/irange.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_tuples.h>
|
|
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
|
|
namespace py = pybind11;
|
|
|
|
// This makes intrusive_ptr to be available as a custom pybind11 holder type,
|
|
// see
|
|
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true);
|
|
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>);
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true);
|
|
|
|
namespace pybind11 {
|
|
namespace detail {
|
|
|
|
// torch.Tensor <-> at::Tensor conversions (without unwrapping)
|
|
template <>
|
|
struct type_caster<at::Tensor> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPVariable_Check(obj)) {
|
|
value = THPVariable_Unpack(obj);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Tensor& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPVariable_Wrap(src));
|
|
}
|
|
};
|
|
|
|
// torch._StorageBase <-> at::Storage
|
|
template <>
|
|
struct type_caster<at::Storage> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Storage, _("at::Storage"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (torch::isStorage(obj)) {
|
|
value = torch::createStorage(obj);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Storage& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(torch::createPyObject(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::Generator> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Generator, _("at::Generator"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPGenerator_Check(obj)) {
|
|
value = reinterpret_cast<THPGenerator*>(obj)->cdata;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Generator& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPGenerator_Wrap(src));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::IntArrayRef> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::IntArrayRef, _("at::IntArrayRef"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* source = src.ptr();
|
|
auto tuple = PyTuple_Check(source);
|
|
if (tuple || PyList_Check(source)) {
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
const auto size =
|
|
tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source);
|
|
v_value.resize(size);
|
|
for (const auto idx : c10::irange(size)) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx)
|
|
: PyList_GET_ITEM(source, idx);
|
|
if (THPVariable_Check(obj)) {
|
|
v_value[idx] = THPVariable_Unpack(obj).item<int64_t>();
|
|
} else if (PyLong_Check(obj)) {
|
|
// use THPUtils_unpackLong after it is safe to include
|
|
// python_numbers.h
|
|
v_value[idx] = THPUtils_unpackLong(obj);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
value = v_value;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
static handle cast(
|
|
at::IntArrayRef src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPUtils_packInt64Array(src.size(), src.data()));
|
|
}
|
|
|
|
private:
|
|
std::vector<int64_t> v_value;
|
|
};
|
|
|
|
template <>
|
|
struct type_caster<at::Device> {
|
|
public:
|
|
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
|
PYBIND11_TYPE_CASTER(at::Device, _("at::Device"));
|
|
|
|
// PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
|
|
// cannot be default-initialized, we provide this constructor to explicitly
|
|
// initialize that field. The value doesn't matter as it will be overwritten
|
|
// after a successful call to load.
|
|
type_caster() : value(c10::kCPU) {}
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPDevice_Check(obj)) {
|
|
value = reinterpret_cast<THPDevice*>(obj)->device;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle cast(
|
|
const at::Device& src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */) {
|
|
return handle(THPDevice_New(src));
|
|
}
|
|
};
|
|
|
|
// Pybind11 bindings for our optional type.
|
|
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
|
|
template <typename T>
|
|
struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {};
|
|
} // namespace detail
|
|
} // namespace pybind11
|
|
|
|
namespace torch {
|
|
namespace impl {
|
|
|
|
// Use this function if you have a C++ object that is used from both C++
|
|
// and Python contexts, and you need its GIL to be released when you
|
|
// destruct it in the Python context.
|
|
//
|
|
// This function is a valid shared_ptr destructor and can be used to
|
|
// conveniently allocate a shared_ptr to an object whose destructor will be run
|
|
// without the GIL. Pass it as the second argument to shared_ptr, e.g.,
|
|
//
|
|
// shared_ptr<T>(new T(), destroy_without_gil<T>)
|
|
//
|
|
// Attaching the GIL release logic to the holder pointer rather than the
|
|
// actual destructor of T is helpful when T is Python-agnostic and
|
|
// shouldn't refer to the PYthon API.
|
|
//
|
|
// Note there are limitations to the correctness of code that makes use of this.
|
|
// In particular, if a shared_ptr is constructed from C++ code without this
|
|
// destructor and then passed to pybind11, pybind11 will happily take ownership
|
|
// of the shared_ptr (and be willing to destruct it from a context where it is
|
|
// holding the GIL). unique_ptr with a type branded deleter is less prone to
|
|
// this problem, because a stock deleter unique_ptr is not convertible with it.
|
|
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
|
|
// destructors that the GIL is not held (using a virtual call to get to the
|
|
// Python interpreter); alternately, we could use a virtual call to simply
|
|
// ensure we release the GIL in the C++ destructor, however, this is a layering
|
|
// violation (why does code that is ostensibly Python agnostic calling into the
|
|
// GIL).
|
|
//
|
|
// Adapted from
|
|
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
|
|
template <typename T>
|
|
inline void destroy_without_gil(T* ptr) {
|
|
// Because the ownership of a shared_ptr is diffuse, it's not possible to
|
|
// necessarily predict whether or not the last reference to an object will
|
|
// be destructed from Python or C++. This means that in the destructor here,
|
|
// we don't necessarily know if we actually have the GIL or not; in fact,
|
|
// we don't even know if the Python interpreter still exists! Thus, we have
|
|
// to test for it before releasing the GIL.
|
|
//
|
|
// PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or
|
|
// _PyIsFinalizing? Both get set at the same time during the Python
|
|
// destruction process:
|
|
// https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
|
|
// so the operant question is whether or not you want to release the GIL after
|
|
// finalization has completed (and there is just no Python interpreter).
|
|
// Clearly there is no need to release GIL in that state, so we want
|
|
// Py_IsInitialized.
|
|
if (Py_IsInitialized() && PyGILState_Check()) {
|
|
pybind11::gil_scoped_release nogil;
|
|
delete ptr;
|
|
} else {
|
|
delete ptr;
|
|
}
|
|
}
|
|
|
|
} // namespace impl
|
|
} // namespace torch
|