Files
pytorch/torch/csrc/tensor/python_tensor.cpp
Sam Gross 30ec06c140 Merge Variable and Tensor classes (#5225)
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.

To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.

There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:

 https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
2018-02-23 18:03:31 -05:00

280 lines
9.4 KiB
C++

#include "python_tensor.h"
#include <structmember.h>
#include <pybind11/pybind11.h>
#include <sstream>
#include "torch/csrc/assertions.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/cuda/lazy_init.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/utils/tensor_new.h"
#include "torch/csrc/utils/tensor_types.h"
namespace torch { namespace tensor {
using namespace at;
using namespace torch::autograd;
struct PyTensorType {
PyTypeObject py_type;
at::Type* aten_type;
bool is_cuda;
bool is_sparse;
// The base tensor type i.e. `torch.Tensor`. All tensors are pass isinstance
// checks on the base type.
bool is_base_type;
char name[64];
};
static_assert(std::is_standard_layout<PyTensorType>::value, "PyTensorType must be standard layout");
static PyTensorType* default_tensor_type;
static void py_bind_tensor_types(const std::vector<PyTensorType>& tensor_types);
static TypeError unavailable_type(const PyTensorType& type) {
const char* cuda_msg = type.is_cuda ? ". Torch not compiled with CUDA enabled." : "";
return TypeError("type %s not available%s", type.name, cuda_msg);
}
static PyObject* Tensor_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) {
HANDLE_TH_ERRORS
auto& tensor_type = *((PyTensorType*)type);
if (!tensor_type.aten_type) {
throw unavailable_type(tensor_type);
}
// TODO: fix Windows issues and remove WITH_CUDA
#ifdef WITH_CUDA
if (tensor_type.is_cuda) {
torch::cuda::lazy_init();
}
#endif
return THPVariable_Wrap(torch::utils::legacy_tensor_ctor(*tensor_type.aten_type, args, kwargs));
END_HANDLE_TH_ERRORS
}
static PyObject* Tensor_instancecheck(PyTensorType* self, PyObject* arg) {
HANDLE_TH_ERRORS
if (THPVariable_Check(arg)) {
if (self->is_base_type) {
// Every tensor is treated as an instance of torch.Tensor
Py_RETURN_TRUE;
}
auto& var = ((THPVariable*)arg)->cdata;
if (&var.type() == self->aten_type) {
Py_RETURN_TRUE;
}
}
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
static struct PyMethodDef metaclass_methods[] = {
{"__instancecheck__", (PyCFunction)Tensor_instancecheck, METH_O, NULL},
{NULL}
};
static struct PyMemberDef metaclass_members[] = {
{(char*)"is_cuda", T_BOOL, offsetof(PyTensorType, is_cuda), READONLY, NULL},
{(char*)"is_sparse", T_BOOL, offsetof(PyTensorType, is_sparse), READONLY, NULL},
{NULL}
};
static PyTypeObject metaclass;
static void py_initialize_metaclass(PyTypeObject& metaclass) {
((PyObject*)&metaclass)->ob_refcnt = 1;
metaclass.tp_basicsize = sizeof(PyTypeObject);
metaclass.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;
metaclass.tp_methods = metaclass_methods;
metaclass.tp_members = metaclass_members;
metaclass.tp_name = "torch.tensortype";
metaclass.tp_base = &PyType_Type;
if (PyType_Ready(&metaclass) < 0) {
throw python_error();
}
}
static void py_initialize_tensor_type(PyTypeObject& type, const char* name, PyObject* tp_dict) {
// NOTE: we don't use the typical static declaration of PyTypeObject because
// we need to initialize as many types as there are VariableType instances.
// The typical PyVarObject_HEAD_INIT(NULL, 0) is described in the Python
// documentation: it initializes the refcnt to 1 and the other object header
// fields to zero.
memset(&type, 0, sizeof(PyTypeObject));
((PyObject*)&type)->ob_refcnt = 1;
((PyObject*)&type)->ob_type = &metaclass;
type.tp_basicsize = sizeof(PyTensorType);
type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;
type.tp_name = name;
type.tp_new = Tensor_new;
if (PyType_Ready(&type) < 0) {
throw python_error();
}
if (PyDict_Merge(type.tp_dict, tp_dict, 0) < 0) {
throw python_error();
}
}
static const char* get_module(Backend backend) {
switch (backend) {
case kCPU: return "torch";
case kCUDA: return "torch.cuda";
case kSparseCPU: return "torch.sparse";
case kSparseCUDA: return "torch.cuda.sparse";
default: runtime_error("invalid backend: %s", toString(backend));
}
}
static std::string get_name(Backend backend, ScalarType scalarType) {
std::ostringstream ss;
ss << get_module(backend) << "." << at::toString(scalarType) << "Tensor";
return ss.str();
}
static void set_type(PyTensorType& type_obj, Backend backend, ScalarType scalarType) {
auto baseType = globalContext().type_registry[static_cast<int>(backend)][static_cast<int>(scalarType)].get();
type_obj.aten_type = baseType ? torch::autograd::VariableType::getType(*baseType) : nullptr;
type_obj.is_cuda = backend == kCUDA || backend == kSparseCUDA;
type_obj.is_sparse = backend == kSparseCPU || backend == kSparseCUDA;
}
static void set_name(PyTensorType& type_obj, const std::string& name) {
size_t n = sizeof(type_obj.name);
strncpy(type_obj.name, name.c_str(), n);
type_obj.name[n - 1] = '\0';
}
static THPObjectPtr get_variable_dict() {
auto autograd = THPObjectPtr(PyImport_ImportModule("torch.autograd"));
if (!autograd) throw python_error();
auto variable_class = THPObjectPtr(PyObject_GetAttrString(autograd.get(), "Variable"));
if (!variable_class) throw python_error();
auto variable_type = (PyTypeObject*)variable_class.get();
TORCH_ASSERTM(variable_type->tp_base, "missing base type for Variable");
auto res = THPObjectPtr(PyDict_New());
if (!res) throw python_error();
if (PyDict_Merge(res.get(), variable_type->tp_dict, 0) < 0) {
throw python_error();
}
if (PyDict_Merge(res.get(), variable_type->tp_base->tp_dict, 0) < 0) {
throw python_error();
}
return res;
}
static std::vector<PyTensorType> tensor_types;
static void initialize_aten_types(std::vector<PyTensorType>& tensor_types) {
// includes CUDA types even when PyTorch is not built with CUDA
auto declared_types = torch::utils::all_declared_types();
tensor_types.resize(declared_types.size() + 1);
for (size_t i = 0, end = declared_types.size(); i != end; i++) {
auto& tensor_type = tensor_types[i];
Backend backend = declared_types[i].first;
ScalarType scalar_type = declared_types[i].second;
set_type(tensor_type, backend, scalar_type);
set_name(tensor_type, get_name(backend, scalar_type));
}
// The type object for torch.Tensor is at the end.
default_tensor_type = &tensor_types.back();
set_type(*default_tensor_type, kCPU, kFloat);
set_name(*default_tensor_type, "torch.Tensor");
default_tensor_type->is_base_type = true;
}
void initialize_python_bindings(PyObject* module) {
// Initialize the at::Type* pointers, name, and properties of the PyTensorType
// vector. After this call, the vector must not be resized.
initialize_aten_types(tensor_types);
// Initialize the Python metaclass for the torch.Tensor, torch.FloatTensor,
// etc. types. The metaclass handles __instancecheck__ checks and binds the
// propeties is_cuda and is_sparse on the type objects.
py_initialize_metaclass(metaclass);
// Get the tp_dict of the Variable class. We copy function definitions
// onto each Tensor type object so that they can be accessed via e.g.
// `torch.Tensor.add`.
auto var_dict = get_variable_dict();
// Initialize each Python type object torch.FloatTensor, torch.DoubleTensor,
// etc. and the "default" type object torch.Tensor.
for (auto& tensor_type : tensor_types) {
py_initialize_tensor_type(tensor_type.py_type, tensor_type.name, var_dict.get());
}
// Add the type objects to their corresponding modules. e.g. torch.FloatTensor
// is added to the `torch` module as `FloatTensor`. Also add all the type
// objects to the set torch._tensor_classes.
py_bind_tensor_types(tensor_types);
}
static void py_bind_tensor_types(const std::vector<PyTensorType>& tensor_types) {
auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!torch_module) throw python_error();
auto tensor_classes = THPObjectPtr(PyObject_GetAttrString(torch_module.get(), "_tensor_classes"));
if (!tensor_classes) throw python_error();
for (auto& tensor_type : tensor_types) {
auto name = std::string(tensor_type.name);
auto idx = name.rfind(".");
auto type_name = name.substr(idx + 1);
auto module_name = name.substr(0, idx);
auto module_obj = THPObjectPtr(PyImport_ImportModule(module_name.c_str()));
if (!module_obj) throw python_error();
PyObject* type_obj = (PyObject*)&tensor_type;
Py_INCREF(type_obj);
if (PyModule_AddObject(module_obj.get(), type_name.c_str(), type_obj) < 0) {
throw python_error();
}
if (PySet_Add(tensor_classes.get(), type_obj) < 0) {
throw python_error();
}
}
}
static bool PyTensorType_Check(PyObject* obj) {
auto it = std::find_if(tensor_types.begin(), tensor_types.end(),
[obj](const PyTensorType& x) {
return (PyObject*)&x == obj;
});
return it != tensor_types.end();
}
void set_default_tensor_type(const at::Type& type) {
set_type(*default_tensor_type, type.backend(), type.scalarType());
}
void py_set_default_tensor_type(PyObject* obj) {
if (!PyTensorType_Check(obj)) {
throw TypeError("invalid type object");
}
auto type = (PyTensorType*)obj;
if (!type->aten_type) {
throw unavailable_type(*type);
}
set_default_tensor_type(*type->aten_type);
}
at::Type& get_default_tensor_type() {
TORCH_ASSERT(default_tensor_type && default_tensor_type->aten_type);
return *default_tensor_type->aten_type;
}
}} // namespace torch::tensor