mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56058 User facing changes: 1. Adds a negative bit and corresponding new API (`is_neg()`,`resolve_neg()`) 2. `tensor.conj().imag` now returns a floating point tensor with neg bit set to 1 instead of a tensor with no notion of negative bit. Note that imag is still a view and all the view properties still hold for imag. Non user facing changes: 1. Added a new Negative dispatch key and a backend fallback to handle it 2. Updated copy kernel to handle negative bit 3. Merged conjugate and negative bit fallback kernel 4. fixed https://github.com/pytorch/pytorch/issues/60478 (caused due to https://github.com/pytorch/pytorch/pull/54987) Testing: 1. Added a new OpInfo based test `test_neg_view` (verifies that out-of-place and in-place operations work correctly for all operations when the input is a neg view tensor by checking the result against an actually negated tensor, verifies that autograd returns the same output for both neg view and actually negated tensors as well as it works fine when grad_out is a neg view). 2. Added a new test class containing `test_conj_view`, `test_neg_view`. Test Plan: Imported from OSS Reviewed By: soulitzer Differential Revision: D29636403 fbshipit-source-id: 12214c9dc4806c51850f4a72a109db9527c0ca63
1502 lines
61 KiB
Python
1502 lines
61 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
import unittest
|
|
from itertools import product, permutations, combinations
|
|
from functools import partial
|
|
import random
|
|
|
|
from torch.testing._internal.common_utils import \
|
|
(TestCase, run_tests, suppress_warnings, make_tensor)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, onlyCPU, dtypes, onlyOnCPUAndCUDA)
|
|
|
|
# TODO: replace this with make_tensor() in common_utils.py
|
|
def _generate_input(shape, dtype, device, with_extremal):
|
|
if shape == ():
|
|
x = torch.tensor((), dtype=dtype, device=device)
|
|
else:
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
# work around torch.randn not being implemented for bfloat16
|
|
if dtype == torch.bfloat16:
|
|
x = torch.randn(*shape, device=device) * random.randint(30, 100)
|
|
x = x.to(torch.bfloat16)
|
|
else:
|
|
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
|
|
x[torch.randn(*shape) > 0.5] = 0
|
|
if with_extremal and dtype.is_floating_point:
|
|
# Use extremal values
|
|
x[torch.randn(*shape) > 0.5] = float('nan')
|
|
x[torch.randn(*shape) > 0.5] = float('inf')
|
|
x[torch.randn(*shape) > 0.5] = float('-inf')
|
|
elif with_extremal and dtype.is_complex:
|
|
x[torch.randn(*shape) > 0.5] = complex('nan')
|
|
x[torch.randn(*shape) > 0.5] = complex('inf')
|
|
x[torch.randn(*shape) > 0.5] = complex('-inf')
|
|
elif dtype == torch.bool:
|
|
x = torch.zeros(shape, dtype=dtype, device=device)
|
|
x[torch.randn(*shape) > 0.5] = True
|
|
else:
|
|
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
|
|
|
|
return x
|
|
|
|
# TODO: replace this with make_tensor() in common_utils.py
|
|
def _rand_shape(dim, min_size, max_size):
|
|
shape = []
|
|
for i in range(dim):
|
|
shape.append(random.randint(min_size, max_size))
|
|
return tuple(shape)
|
|
|
|
# TODO: refactor tests to avoid this function
|
|
# Converts half/bfloat16 dtype to float when device is cpu
|
|
def _convert_t(dtype, device):
|
|
if device == 'cpu' and dtype in {torch.half, torch.bfloat16}:
|
|
return torch.float
|
|
return dtype
|
|
|
|
# TODO: replace this with make_tensor() in common_utils.py
|
|
# Returns a tensor of the requested shape, dtype, and device
|
|
# Requesting a half CPU tensor returns a float CPU tensor with
|
|
# values representable by a half.
|
|
# Initialization uses randint for non-float types and randn for float types.
|
|
def _make_tensor(shape, dtype, device, fill_ones=False) -> torch.Tensor:
|
|
# Returns a tensor filled with ones
|
|
if fill_ones:
|
|
return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device)
|
|
|
|
# Returns a tensor with random integer values
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
t = torch.randint(0, 10, shape, device=device)
|
|
if dtype != torch.uint8:
|
|
t = t - 5 # generate negative values also
|
|
return t.to(_convert_t(dtype, device))
|
|
|
|
# Populates the CPU tensor with floats representable as half/bfloat16
|
|
if dtype == torch.half and device == 'cpu':
|
|
return torch.randn(*shape, dtype=torch.float, device=device).half().float()
|
|
if dtype == torch.bfloat16 and device == 'cpu':
|
|
return torch.randn(*shape, dtype=torch.float, device=device).bfloat16().float()
|
|
|
|
# Default: returns a tensor with random float values
|
|
return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype)
|
|
|
|
# Tests ops and indexing to ensure they return views (and new tensors) as
|
|
# appropriate.
|
|
class TestViewOps(TestCase):
|
|
exact_dtype = True
|
|
|
|
def is_view_of(self, base, other):
|
|
if (not other._is_view() or
|
|
other is base or
|
|
other._base is not base or
|
|
base.device != other.device):
|
|
return False
|
|
# Note: only validates storage on native device types
|
|
# because some accelerators, like XLA, do not expose storage
|
|
if base.device.type == 'cpu' or base.device.type == 'cuda':
|
|
if base.storage().data_ptr() != other.storage().data_ptr():
|
|
return False
|
|
|
|
return True
|
|
|
|
# Returns true if v1 and v2 are views of the same base
|
|
def is_view_of_same_base(self, v1, v2):
|
|
if (not v1._is_view() or v1 is v2):
|
|
return False
|
|
return self.is_view_of(v1._base, v2)
|
|
|
|
# Performs transpose if contiguous=True, else returns the input tensor as is
|
|
def _do_transpose(self, x, contiguous=False, dim0=0, dim1=1):
|
|
if contiguous:
|
|
return x
|
|
else:
|
|
return x.transpose(dim0, dim1)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_conj_self(self, device, dtype):
|
|
t = torch.ones(5, 5, device=device)
|
|
s = t.conj()
|
|
self.assertTrue(s is t)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_fp_dtypes(include_bfloat16=False), torch.complex64)
|
|
def test_view_dtype(self, device, dtype):
|
|
int_dtype = {
|
|
torch.half: torch.int16,
|
|
torch.bfloat16: torch.int16,
|
|
torch.float: torch.int,
|
|
torch.double: torch.long,
|
|
torch.complex64: torch.long,
|
|
}[dtype]
|
|
numpy_dtype = {
|
|
torch.half: np.int16,
|
|
torch.bfloat16: np.int16,
|
|
torch.float: np.int32,
|
|
torch.double: np.int64,
|
|
torch.complex64: np.int64,
|
|
}[dtype]
|
|
|
|
def generate_inputs():
|
|
yield make_tensor((5, 5, 5), device, dtype, low=-5, high=5)
|
|
yield make_tensor((5, 5, 5), device, dtype, low=-5, high=5).permute(2, 0, 1)
|
|
yield make_tensor((1, 5, 1), device, dtype, low=-5, high=5).expand(5, 5, 5)
|
|
yield make_tensor((10, 5, 10), device, dtype, low=-5, high=5)[::2, :, ::2]
|
|
yield make_tensor((0, 5, 10), device, dtype, low=-5, high=5)
|
|
yield make_tensor((), device, dtype, low=-5, high=5)
|
|
|
|
def run_test(fp_tensor):
|
|
self.assertRaises(RuntimeError, lambda: fp_tensor.view(torch.complex128))
|
|
self.assertRaises(RuntimeError, lambda: fp_tensor.view(torch.int8))
|
|
|
|
int_tensor = fp_tensor.view(int_dtype)
|
|
self.assertEqual(int_tensor.dtype, int_dtype)
|
|
self.assertEqual(int_tensor.shape, fp_tensor.shape)
|
|
self.assertEqual(int_tensor.stride(), fp_tensor.stride())
|
|
|
|
self.assertEqual(fp_tensor, int_tensor.view(dtype), rtol=0, atol=0)
|
|
self.assertEqual(fp_tensor.cpu().numpy().view(numpy_dtype), int_tensor, rtol=0, atol=0)
|
|
|
|
fp_tensor.zero_()
|
|
self.assertEqual(fp_tensor, torch.zeros_like(fp_tensor), rtol=0, atol=0)
|
|
|
|
for fp_tensor in generate_inputs():
|
|
run_test(fp_tensor)
|
|
|
|
# Test that requires_grad is dropped, because view(dtype) does not support backward
|
|
if dtype is torch.double:
|
|
t = make_tensor((5, 5, 5), device, torch.double, low=-5, high=5, requires_grad=True)
|
|
self.assertFalse(t.view(torch.complex64).requires_grad)
|
|
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_view_as_complex(self, device):
|
|
def fn(contiguous_input=True, dim0=0, dim1=1):
|
|
t = torch.randn(3, 2, 2, device=device)
|
|
c_t = t[:, :, 0] + 1j * t[:, :, 1]
|
|
|
|
input = self._do_transpose(t, contiguous_input, dim0, dim1)
|
|
|
|
if input.size()[-1] != 2:
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension of size 2",
|
|
lambda: torch.view_as_complex(input))
|
|
return
|
|
|
|
if input.stride()[-1] != 1:
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension with stride 1",
|
|
lambda: torch.view_as_complex(input))
|
|
return
|
|
|
|
res = torch.view_as_complex(input)
|
|
self.assertEqual(res, self._do_transpose(c_t, contiguous_input, dim0, dim1))
|
|
self.assertTrue(self.is_view_of(t, res))
|
|
|
|
fn()
|
|
fn(contiguous_input=False)
|
|
# RuntimeError since in this case the last dim of input would not be of size 2
|
|
fn(contiguous_input=False, dim0=0, dim1=2)
|
|
# RuntimeError since in this case the last dim of input would not have stride 1
|
|
fn(contiguous_input=False, dim0=1, dim1=2)
|
|
|
|
|
|
# RuntimeError since in this case the stride of non-last dim of input would not be of size 2
|
|
x = torch.randn(3, 3, device=device)
|
|
t = torch.as_strided(x, (2, 2), (1, 1))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a stride divisible by 2 for all but last dimension",
|
|
lambda: torch.view_as_complex(t))
|
|
|
|
# tensor with zero elements
|
|
x = torch.tensor([], device=device) # torch.Size([0])
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension of size 2",
|
|
lambda: torch.view_as_complex(x))
|
|
|
|
# zero dimension tensor
|
|
z = torch.tensor(2.0)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Input tensor must have one or more dimensions",
|
|
lambda: torch.view_as_complex(z))
|
|
|
|
y = x.reshape(0, 2) # torch.Size([0, 2])
|
|
res = torch.view_as_complex(y)
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([0]))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_complex_dtypes(include_complex32=True))
|
|
def test_view_as_real(self, device, dtype):
|
|
def fn(contiguous_input=True):
|
|
t = torch.randn(3, 4, dtype=dtype, device=device)
|
|
input = self._do_transpose(t, contiguous_input)
|
|
res = torch.view_as_real(input)
|
|
self.assertEqual(res[:, :, 0], input.real)
|
|
self.assertEqual(res[:, :, 1], input.imag)
|
|
# TODO: Add torch.ComplexHalfStorage
|
|
if dtype != torch.complex32:
|
|
self.assertTrue(self.is_view_of(t, res))
|
|
else:
|
|
self.assertRaises(RuntimeError, lambda: self.is_view_of(t, res))
|
|
|
|
fn()
|
|
fn(contiguous_input=False)
|
|
|
|
# tensor with zero elements
|
|
x = torch.tensor([], dtype=dtype, device=device)
|
|
res = torch.view_as_real(x)
|
|
# TODO: Add torch.ComplexHalfStorage
|
|
if dtype != torch.complex32:
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
else:
|
|
self.assertRaises(RuntimeError, lambda: self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([0, 2]))
|
|
|
|
# tensor with zero dim
|
|
x = torch.tensor(2 + 3j, dtype=dtype, device=device)
|
|
res = torch.view_as_real(x)
|
|
# TODO: Add torch.ComplexHalfStorage
|
|
if dtype != torch.complex32:
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
else:
|
|
self.assertRaises(RuntimeError, lambda: self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([2]))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_view_tensor_split(self, device, dtype):
|
|
a = make_tensor((40, 30), device, dtype, low=-9, high=9)
|
|
a_split_dim0 = a.tensor_split(7, 0)
|
|
for a_split_dim0_tensor in a_split_dim0:
|
|
self.assertTrue(self.is_view_of(a, a_split_dim0_tensor))
|
|
a_split_dim1 = a.tensor_split(7, 1)
|
|
for a_split_dim1_tensor in a_split_dim1:
|
|
self.assertTrue(self.is_view_of(a, a_split_dim1_tensor))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_view_tensor_hsplit(self, device, dtype):
|
|
t = make_tensor((4, 4, 4), device, dtype, low=-9, high=9)
|
|
t_hsplit = torch.hsplit(t, 2)
|
|
for t_hsplit_tensor in t_hsplit:
|
|
self.assertTrue(self.is_view_of(t, t_hsplit_tensor))
|
|
t[2, 2, 2] = 7
|
|
self.assertEqual(t_hsplit[1][2, 0, 2], t[2, 2, 2])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_view_tensor_vsplit(self, device, dtype):
|
|
t = make_tensor((4, 4, 4), device, dtype, low=-9, high=9)
|
|
t_vsplit = torch.vsplit(t, 2)
|
|
for t_vsplit_tensor in t_vsplit:
|
|
self.assertTrue(self.is_view_of(t, t_vsplit_tensor))
|
|
t[2, 2, 2] = 7
|
|
self.assertEqual(t_vsplit[1][0, 2, 2], t[2, 2, 2])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_view_tensor_dsplit(self, device, dtype):
|
|
t = make_tensor((4, 4, 4), device, dtype, low=-9, high=9)
|
|
t_dsplit = torch.dsplit(t, 2)
|
|
for t_dsplit_tensor in t_dsplit:
|
|
self.assertTrue(self.is_view_of(t, t_dsplit_tensor))
|
|
t[2, 2, 2] = 7
|
|
self.assertEqual(t_dsplit[1][2, 2, 0], t[2, 2, 2])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_real_imag_noncomplex(self, device, dtype):
|
|
t = torch.ones((5, 5), dtype=dtype, device=device)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.real(t)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.imag(t)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_complex_dtypes())
|
|
def test_real_imag_view(self, device, dtype):
|
|
def compare_with_numpy(contiguous_input=True):
|
|
t = torch.randn(3, 3, dtype=dtype, device=device)
|
|
if not contiguous_input:
|
|
u = t.T
|
|
else:
|
|
u = t
|
|
|
|
re = u.real
|
|
exp = torch.from_numpy(u.cpu().numpy().real).to(device=device)
|
|
self.assertEqual(re, exp)
|
|
# for the case of contiguous_input, t=u
|
|
# for the case of non contiguous_input, the base still remains
|
|
# t since we are performing a view operation to make the input non-contiguous
|
|
self.assertTrue(self.is_view_of(t, re))
|
|
|
|
im = u.imag
|
|
exp = torch.from_numpy(u.cpu().numpy().imag).to(device=device)
|
|
self.assertEqual(im, exp)
|
|
self.assertTrue(self.is_view_of(t, im))
|
|
|
|
compare_with_numpy()
|
|
compare_with_numpy(contiguous_input=False)
|
|
|
|
# ensure storage offset is being correctly set
|
|
a = torch.randn(10, dtype=dtype)
|
|
self.assertEqual(a[5:].real, a.real[5:])
|
|
self.assertEqual(a[5:].imag, a.imag[5:])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_complex_dtypes())
|
|
def test_conj_imag_view(self, device, dtype) -> None:
|
|
t = _make_tensor((4, 5,), dtype, device)
|
|
t_numpy_conj = torch.from_numpy(t.cpu().numpy().conj()).to(device=device)
|
|
v = t.conj()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
self.assertEqual(v, t_numpy_conj)
|
|
|
|
if (t.is_complex()):
|
|
v_imag = v.imag
|
|
self.assertTrue(self.is_view_of(t, v_imag))
|
|
self.assertEqual(v_imag, t_numpy_conj.imag)
|
|
self.assertTrue(v_imag.is_neg())
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*product(torch.testing.get_all_complex_dtypes(), torch.testing.get_all_dtypes()))
|
|
@suppress_warnings
|
|
def test_set_real_imag(self, device, dtypes):
|
|
x = torch.randn(10, dtype=dtypes[0], device=device)
|
|
|
|
new_real = _make_tensor((10,), dtypes[1], device)
|
|
new_imag = _make_tensor((10,), dtypes[1], device)
|
|
|
|
x.real = new_real
|
|
x.imag = new_imag
|
|
|
|
if dtypes[1].is_complex:
|
|
self.assertEqual(x.real, new_real.real, exact_dtype=False)
|
|
self.assertEqual(x.imag, new_imag.real, exact_dtype=False)
|
|
|
|
else:
|
|
self.assertEqual(x.real, new_real, exact_dtype=False)
|
|
self.assertEqual(x.imag, new_imag, exact_dtype=False)
|
|
|
|
def test_diagonal_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = torch.diagonal(t)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = 0
|
|
self.assertEqual(t[0, 0], v[0])
|
|
|
|
t = torch.ones((3, 3, 3), device=device)
|
|
v = torch.diagonal(t, offset=1, dim1=1, dim2=2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0, 1], v[0, 0])
|
|
|
|
def test_select_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.select(0, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = 0
|
|
self.assertEqual(t[2, 0], v[0])
|
|
|
|
def test_unbind_view(self, device) -> None:
|
|
t = torch.zeros((5, 5), device=device)
|
|
tup = torch.unbind(t)
|
|
|
|
for idx, v in enumerate(tup):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0])
|
|
|
|
def test_expand_view(self, device) -> None:
|
|
t = torch.ones((5, 1), device=device)
|
|
v = t.expand(5, 5)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[2, 2] = 0
|
|
self.assertEqual(t[2, 0], v[2, 2])
|
|
|
|
def test_expand_as_view(self, device):
|
|
t = torch.ones((5, 1), device=device)
|
|
e = torch.empty((5, 5), device=device)
|
|
v = t.expand_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[2, 2] = 0
|
|
self.assertEqual(t[2, 0], v[2, 2])
|
|
|
|
def test_narrow_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = torch.narrow(t, 1, 2, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 2], v[0, 0])
|
|
|
|
def test_permute_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.permute(1, 0)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_transpose_view(self, device):
|
|
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = fn(t, 0, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_transpose_inplace_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.swapdims_(0, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.swapaxes_(0, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.transpose_(0, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_t_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.t()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_t_inplace_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.t_()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_T_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.T
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_unfold_view(self, device):
|
|
t = torch.ones(10, device=device)
|
|
v = t.unfold(0, 3, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[1, 0] = 0
|
|
self.assertEqual(t[2], v[1, 0])
|
|
|
|
def test_squeeze_view(self, device):
|
|
t = torch.ones(5, 1, 5, device=device)
|
|
v = torch.squeeze(t)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t, v._base)
|
|
|
|
def test_squeeze_inplace_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.squeeze_()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t, v._base)
|
|
|
|
def test_unsqueeze_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.unsqueeze(t, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0, 1] = 0
|
|
self.assertEqual(t[0, 1], v[0, 0, 1])
|
|
|
|
def test_unsqueeze_inplace_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.unsqueeze_(1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 0, 1] = 0
|
|
self.assertEqual(t[0, 1], v[0, 0, 1])
|
|
|
|
def test_as_strided_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.as_strided(t, (25,), (1,))
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_as_strided_inplace_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view_as(t)
|
|
v = v.as_strided_((25,), (1,))
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_view_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view(25)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_view_as_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
e = torch.empty((25,))
|
|
v = t.view_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_contiguous_self(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
s = t.contiguous()
|
|
self.assertTrue(s is t)
|
|
|
|
def test_contiguous_nonview(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
nv = t.t().contiguous()
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[0, 0] = 0
|
|
self.assertNotEqual(t[0, 0], nv[0, 0])
|
|
|
|
def test_reshape_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.reshape(t, (25,))
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_reshape_as_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
e = torch.empty((25,), device=device)
|
|
v = t.reshape_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_reshape_nonview(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
nv = torch.reshape(t.t(), (25,))
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[6] = 0
|
|
self.assertNotEqual(t[1, 1], nv[6])
|
|
|
|
def test_flatten_view(self, device):
|
|
def test_writes_propagate(t, v):
|
|
idx_t = (0,) * t.ndim
|
|
idx_v = (0,) * v.ndim
|
|
v[idx_v] = 0
|
|
self.assertEqual(t[idx_t], v[idx_v])
|
|
|
|
t = torch.ones(1, 2, 3, 4, device=device)
|
|
v = t.flatten()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
test_writes_propagate(t, v)
|
|
|
|
# zero-dimensional tensor
|
|
t = torch.tensor(1, device=device)
|
|
v = t.flatten()
|
|
test_writes_propagate(t, v)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
t = torch.ones(1, 2, 3, 4, device=device).transpose(2, 3)
|
|
v = t.flatten(0, 1)
|
|
test_writes_propagate(t, v)
|
|
self.assertTrue(self.is_view_of_same_base(t, v))
|
|
|
|
# stride[i] = stride[i + 1] * size[i + 1] is satisfied for 3 groups:
|
|
t = torch.ones(720, device=device) \
|
|
.as_strided((2, 3, 2, 3, 5, 4), (6, 2, 15, 5, 1, 0))
|
|
# [--1--|---2---|-3-] [--1--|----2---|-3-]
|
|
v1 = t.flatten(0, 1)
|
|
v2 = v1.flatten(1, 3)
|
|
v3 = v2.flatten(2, 2)
|
|
test_writes_propagate(t, v1)
|
|
self.assertTrue(self.is_view_of_same_base(t, v1))
|
|
test_writes_propagate(t, v2)
|
|
self.assertTrue(self.is_view_of_same_base(t, v2))
|
|
test_writes_propagate(t, v3)
|
|
self.assertTrue(self.is_view_of_same_base(t, v3))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_flatten_nonview(self, device):
|
|
def assert_is_nonview(t, nv):
|
|
idx_t = (0,) * t.ndim
|
|
idx_nv = (0,) * nv.ndim
|
|
self.assertTrue(not nv._is_view())
|
|
nv[idx_nv] = 0
|
|
self.assertNotEqual(t[idx_t], nv[idx_nv])
|
|
t = torch.ones(2, 3, 2, 3, device=device).transpose(2, 3)
|
|
nv = t.flatten(1, 3)
|
|
assert_is_nonview(t, nv)
|
|
|
|
t = torch.ones(2, 2, device=device).T
|
|
nv = t.flatten()
|
|
assert_is_nonview(t, nv)
|
|
|
|
# flatten returns the original object if start_dim=end_dim
|
|
t = t = torch.ones(2, 2, device=device)
|
|
nv = t.flatten(1, 1)
|
|
self.assertTrue(t is nv)
|
|
|
|
def test_basic_indexing_slice_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[:2, :3]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0], v[0, 0])
|
|
|
|
def test_basic_indexing_ellipses_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[..., :2]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0], v[0, 0])
|
|
|
|
def test_basic_indexing_newaxis_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[None, :2, 3]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 3], v[0, 0])
|
|
|
|
def test_advanced_indexing_nonview(self, device):
|
|
t = torch.ones(3, 3, device=device)
|
|
rows = torch.tensor([[0, 0], [2, 2]], device=device)
|
|
cols = torch.tensor([[0, 1], [2, 2]], device=device)
|
|
nv = t[rows, cols]
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[1, 1] = 0
|
|
self.assertNotEqual(t[2, 2], nv[1, 1])
|
|
|
|
def test_advanced_indexing_assignment(self, device):
|
|
t = torch.ones(3, 3, device=device)
|
|
rows = torch.tensor([[0, 0], [2, 2]], device=device)
|
|
cols = torch.tensor([[0, 1], [2, 2]], device=device)
|
|
t[rows, cols] = 0
|
|
self.assertEqual(t[2, 2], 0)
|
|
|
|
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
|
|
def test_chunk_view(self, device):
|
|
t = torch.zeros(3, 3, device=device)
|
|
l = torch.chunk(t, 3)
|
|
|
|
for idx, v in enumerate(l):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0, 0])
|
|
|
|
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
|
|
def test_split_view(self, device):
|
|
t = torch.zeros(3, 3, device=device)
|
|
l = torch.split(t, [1, 1, 1])
|
|
|
|
for idx, v in enumerate(l):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0, 0])
|
|
|
|
def test_movedim_view(self, device):
|
|
def run_test(device, op):
|
|
t = torch.zeros(3, 3, device=device)
|
|
out = op(t)
|
|
|
|
self.assertTrue(self.is_view_of(t, out))
|
|
|
|
# Randomly change values in output
|
|
# and verify that original is changed
|
|
# as well.
|
|
for _ in range(3):
|
|
idx_1, idx_2 = random.randint(0, 2), random.randint(0, 2)
|
|
out[idx_1, idx_2] = random.random()
|
|
self.assertEqual(t[idx_2, idx_1], out[idx_1, idx_2])
|
|
|
|
for fn in [torch.movedim, torch.moveaxis]:
|
|
op = partial(fn, source=(0, 1), destination=(1, 0))
|
|
run_test(device, op)
|
|
|
|
op = partial(fn, source=0, destination=1)
|
|
run_test(device, op)
|
|
|
|
class TestOldViewOps(TestCase):
|
|
def test_ravel(self, device):
|
|
|
|
def _test_ravel(tensors, size, nc=False):
|
|
for src in tensors:
|
|
# Continuous Tensor -> View
|
|
flat = src.ravel()
|
|
self.assertEqual(flat.shape, torch.Size([size]))
|
|
self.assertEqual(src.view(-1), flat)
|
|
self.assertEqual(flat._base, src)
|
|
|
|
# Non-continuous Tensor -> Copy
|
|
if nc:
|
|
nc_src = src.t()
|
|
nc_flat = nc_src.ravel()
|
|
self.assertEqual(nc_flat.shape, torch.Size([size]))
|
|
self.assertEqual(nc_src.reshape(-1), nc_flat)
|
|
self.assertTrue(nc_flat._base != nc_src)
|
|
|
|
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
|
|
zero_dim_tensor = torch.tensor(123, device=device)
|
|
flat0 = zero_dim_tensor.ravel()
|
|
one_dim_tensor = torch.tensor([123], device=device)
|
|
flat1 = zero_dim_tensor.ravel()
|
|
|
|
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
|
|
self.assertEqual(flat0.shape, torch.Size([1]))
|
|
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
|
|
self.assertEqual(flat1.shape, torch.Size([1]))
|
|
self.assertEqual(flat0, one_dim_tensor)
|
|
self.assertEqual(flat0, flat1)
|
|
self.assertEqual(flat0.shape, flat1.shape)
|
|
|
|
# Test both float tensor and quantized tensor
|
|
tensors = [torch.randn(5, 5, 5, 5, device=device),
|
|
torch._empty_affine_quantized([5, 5, 5, 5],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8,
|
|
device=device)]
|
|
_test_ravel(tensors, 625)
|
|
|
|
tensors = [torch.randn(0, 2, 3, device=device),
|
|
torch.randn(3, 0, 2, device=device),
|
|
torch._empty_affine_quantized([0, 2, 3],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8,
|
|
device=device),
|
|
torch._empty_affine_quantized([3, 0, 2],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8,
|
|
device=device)]
|
|
_test_ravel(tensors, 0)
|
|
|
|
tensors = [torch.randn(5, 5, device=device),
|
|
torch._empty_affine_quantized([5, 5],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8,
|
|
device=device)]
|
|
_test_ravel(tensors, 25, True)
|
|
|
|
# TODO: this should be refactored into the view ops test suite
|
|
def test_empty_reshape(self, device):
|
|
x = torch.randn(0, 6, device=device)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape)
|
|
# should be viewable -- i.e. data_ptr is the same.
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr())
|
|
|
|
# match NumPy semantics -- don't infer the size of dimension with a degree of freedom
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(0, -1))
|
|
|
|
def test_expand(self, device):
|
|
tensor = torch.rand(1, 8, 1, device=device)
|
|
tensor2 = torch.rand(5, device=device)
|
|
template = torch.rand(4, 8, 5, device=device)
|
|
target = template.size()
|
|
self.assertEqual(tensor.expand_as(template).size(), target)
|
|
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor.expand(target).size(), target)
|
|
self.assertEqual(tensor2.expand_as(template).size(), target)
|
|
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor2.expand(target).size(), target)
|
|
|
|
# test double expand
|
|
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
|
|
|
|
# test non-contiguous
|
|
noncontig = torch.randn(5, 2, 1, 3, device=device)[:, 0]
|
|
self.assertFalse(noncontig.is_contiguous())
|
|
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
|
|
|
|
# make sure it's compatible with unsqueeze
|
|
expanded = tensor2.expand(1, 1, 5)
|
|
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
|
|
self.assertEqual(expanded, unsqueezed)
|
|
self.assertEqual(expanded.stride(), unsqueezed.stride())
|
|
|
|
# test -1 as target size
|
|
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
|
|
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
|
|
|
|
# test expanding empty to empty
|
|
self.assertEqual(torch.zeros(0, device=device).expand((0,)), torch.zeros(0, device=device))
|
|
|
|
# TODO: this should be refactored into the view ops test suite
|
|
def test_view_empty(self, device):
|
|
x = torch.randn(0, 6, device=device)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape)
|
|
|
|
# TODO: this should be refactored into the view ops test suite
|
|
@onlyOnCPUAndCUDA
|
|
def test_reshape(self, device):
|
|
x = torch.randn(3, 3, device=device)
|
|
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
|
|
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
|
|
|
|
y = torch.randn(4, 4, 4, device=device)[:, 0, :]
|
|
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
|
|
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
|
|
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
|
|
|
|
s = torch.randn((), device=device)
|
|
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
|
|
self.assertEqual(s.reshape(-1).shape, (1,))
|
|
self.assertRaises(RuntimeError, lambda: s.reshape(2))
|
|
|
|
empty = torch.tensor([], device=device)
|
|
self.assertEqual(empty, empty.reshape(-1))
|
|
self.assertEqual(empty, empty.reshape([0]))
|
|
# TODO: fix these once we have multi-dimensional empty tensors
|
|
self.assertEqual(empty.reshape([0, 1]).shape, (0, 1))
|
|
self.assertEqual(empty.reshape([1, -1]).shape, (1, 0))
|
|
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
|
|
|
|
x = torch.randn(3, 3, device=device)
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr())
|
|
self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10, device=device)))
|
|
|
|
def test_flatten(self, device):
|
|
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
|
|
zero_dim_tensor = torch.tensor(123, device=device)
|
|
flat0 = zero_dim_tensor.flatten()
|
|
one_dim_tensor = torch.tensor([123], device=device)
|
|
flat1 = zero_dim_tensor.flatten()
|
|
|
|
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
|
|
self.assertEqual(flat0.shape, torch.Size([1]))
|
|
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
|
|
self.assertEqual(flat1.shape, torch.Size([1]))
|
|
self.assertEqual(flat0, one_dim_tensor)
|
|
self.assertEqual(flat0, flat1)
|
|
self.assertEqual(flat0.shape, flat1.shape)
|
|
|
|
# Test both float tensor and quantized tensor
|
|
tensors = [torch.randn(5, 5, 5, 5, device=device),
|
|
torch._empty_affine_quantized([5, 5, 5, 5],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8,
|
|
device=device)]
|
|
for src in tensors:
|
|
flat = src.flatten(0, -1)
|
|
self.assertEqual(flat.shape, torch.Size([625]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 2)
|
|
self.assertEqual(flat.shape, torch.Size([125, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 1)
|
|
self.assertEqual(flat.shape, torch.Size([25, 5, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(1, 2)
|
|
self.assertEqual(flat.shape, torch.Size([5, 25, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 3)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(-2, -1)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 2)
|
|
self.assertEqual(flat, src)
|
|
|
|
# out of bounds index
|
|
with self.assertRaisesRegex(IndexError, 'Dimension out of range'):
|
|
src.flatten(5, 10)
|
|
|
|
# invalid start and end
|
|
with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'):
|
|
src.flatten(2, 0)
|
|
|
|
# TODO: update to work on CUDA, too
|
|
@onlyCPU
|
|
def test_narrow(self, device):
|
|
x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
|
self.assertEqual(x.narrow(0, 0, 1), torch.tensor([[0, 1, 2]]))
|
|
self.assertEqual(x.narrow(0, 0, 2), torch.tensor([[0, 1, 2], [3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, 1, 1), torch.tensor([[3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, -1, 1), torch.tensor([[6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -2, 2), torch.tensor([[3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -3, 3), torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(-1, -1, 1), torch.tensor([[2], [5], [8]]))
|
|
self.assertEqual(x.narrow(-2, -1, 1), torch.tensor([[6, 7, 8]]))
|
|
|
|
# TODO: update to work on CUDA, too
|
|
@onlyCPU
|
|
def test_narrow_tensor(self, device):
|
|
x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
|
self.assertEqual(x.narrow(0, torch.tensor(0), 1), torch.tensor([[0, 1, 2]]))
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor(0.), 1)
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor([0]), 1)
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor([0, 1]), 1)
|
|
|
|
# TODO: make work on CUDA, too
|
|
@onlyCPU
|
|
def test_t(self, device):
|
|
# Test 0D tensors
|
|
x = torch.randn(())
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 1D tensors
|
|
x = torch.arange(4)
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 2D tensors
|
|
x = torch.rand((2, 2))
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
x = x.to_sparse()
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
|
|
# Test 3D tensor
|
|
x = torch.rand((2, 2, 2))
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'):
|
|
x.t()
|
|
x = x.to_sparse()
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'):
|
|
x.t()
|
|
|
|
@onlyCPU
|
|
def test_split(self, device):
|
|
tensor = torch.rand(7, 4)
|
|
split_size = 3
|
|
dim = 0
|
|
target_sizes = ([3, 4], [3, 4], [1, 4])
|
|
splits = tensor.split(split_size, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
# Variable sections split
|
|
tensor = torch.randn(20, 10)
|
|
dim = 0
|
|
split_sizes = [5, 5, 10]
|
|
target_sizes = ([[5, 10], [5, 10], [10, 10]])
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
split_sizes = [2, 2, 6]
|
|
target_sizes = ([20, 2], [20, 2], [20, 6])
|
|
dim = 1
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
@onlyCPU
|
|
def test_chunk(self, device):
|
|
tensor = torch.rand(4, 7)
|
|
num_chunks = 3
|
|
dim = 1
|
|
target_sizes = ([4, 3], [4, 3], [4, 1])
|
|
splits = tensor.chunk(num_chunks, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
|
|
atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
# Invalid chunk sizes
|
|
error_regex = 'chunk expects.*greater than 0'
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(0)
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(-2)
|
|
|
|
# TODO: make work on CUDA, too
|
|
@onlyCPU
|
|
def test_unsqueeze(self, device) -> None:
|
|
x = torch.randn(2, 3, 4)
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.view(2, 1, 3, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.view(2, 3, 1, 4))
|
|
|
|
x = x[:, 1]
|
|
self.assertFalse(x.is_contiguous())
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.contiguous().view(2, 1, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.contiguous().view(2, 4, 1))
|
|
|
|
# unit test for special case transposed copy (see ATen/native/Copy.cpp for details)
|
|
def test_big_transpose(self, device):
|
|
t = torch.rand(456, 789, device=device)
|
|
t1 = t.t().contiguous()
|
|
t2 = torch.from_numpy(t.cpu().numpy().transpose())
|
|
self.assertEqual(t1, t2)
|
|
|
|
def test_T(self, device):
|
|
a = torch.randn(2, 3, 4, device=device)
|
|
t1 = a.T
|
|
t2 = a.permute(2, 1, 0)
|
|
self.assertEqual(t2, t1)
|
|
b = torch.randn(10, device=device)
|
|
self.assertEqual(b, b.T)
|
|
scalar = torch.tensor(5, device=device)
|
|
self.assertEqual(scalar, scalar.T)
|
|
|
|
def test_python_types(self, device):
|
|
a1 = torch.randn((1, 2), device=device, dtype=torch.float64)
|
|
a2 = torch.randn((1, 2), device=device, dtype=float)
|
|
self.assertEqual(a1.dtype, a2.dtype)
|
|
|
|
b1 = torch.arange(10, 20, dtype=torch.int64, device=device)
|
|
b2 = torch.arange(10, 20, dtype=int, device=device)
|
|
self.assertEqual(b1.dtype, b2.dtype)
|
|
|
|
c1 = torch.tensor([True, False], dtype=torch.bool, device=device)
|
|
c2 = torch.tensor([True, False], dtype=bool, device=device)
|
|
self.assertEqual(c1.dtype, c2.dtype)
|
|
|
|
# TODO: is resize best put in test_view_ops?
|
|
def test_resize_as_preserves_strides(self, device):
|
|
x = torch.empty(2, 3).t()
|
|
old_strides = x.stride()
|
|
x.resize_as_(x)
|
|
self.assertEqual(x.stride(), old_strides)
|
|
|
|
def test_memory_format_resize_as(self, device):
|
|
def test_helper(shape, memory_format, device):
|
|
xc = torch.randn(shape, device=device).contiguous(memory_format=memory_format)
|
|
flat = torch.randn(xc.numel(), device=device)
|
|
flat.resize_as_(xc, memory_format=torch.preserve_format)
|
|
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((10, 3, 32, 32), torch.channels_last, device)
|
|
test_helper((3, 10, 3, 32, 32), torch.channels_last_3d, device)
|
|
|
|
def test_memory_format_resize_(self, device):
|
|
def test_helper(shape, numel, memory_format, device):
|
|
flat = torch.randn(numel, device=device)
|
|
flat.resize_(shape, memory_format=memory_format)
|
|
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((10, 3, 32, 32), 10 * 3 * 32 * 32, torch.channels_last, device)
|
|
test_helper((3, 10, 3, 32, 32), 3 * 10 * 3 * 32 * 32, torch.channels_last_3d, device)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.int64, torch.float, torch.complex128)
|
|
def test_transpose_invalid(self, device, dtype):
|
|
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
|
|
shape = _rand_shape(4, min_size=5, max_size=10)
|
|
x = _generate_input(shape, dtype, device, False)
|
|
|
|
# Invalid `source` and `destination` dimension
|
|
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
|
|
fn(x, 5, 0)
|
|
|
|
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
|
|
fn(x, 0, 5)
|
|
|
|
@dtypes(torch.int64, torch.float, torch.complex128)
|
|
def test_transpose_vs_numpy(self, device, dtype):
|
|
for fn in (torch.swapdims, torch.swapaxes, torch.transpose):
|
|
for nd in range(5):
|
|
shape = _rand_shape(nd, min_size=5, max_size=10)
|
|
x = _generate_input(shape, dtype, device, with_extremal=False)
|
|
for random_negative in [True, False]:
|
|
for src_dim, dst_dim in permutations(range(nd), r=2):
|
|
random_prob = random.random()
|
|
|
|
if random_negative and random_prob > 0.66:
|
|
src_dim = src_dim - nd
|
|
elif random_negative and random_prob > 0.33:
|
|
dst_dim = dst_dim - nd
|
|
elif random_negative:
|
|
src_dim = src_dim - nd
|
|
dst_dim = dst_dim - nd
|
|
|
|
partial_map = {
|
|
torch.swapdims: partial(torch.swapdims, dim0=src_dim, dim1=dst_dim),
|
|
torch.swapaxes: partial(torch.swapaxes, axis0=src_dim, axis1=dst_dim),
|
|
torch.transpose: partial(torch.transpose, dim0=src_dim, dim1=dst_dim),
|
|
}
|
|
|
|
torch_fn = partial_map[fn]
|
|
np_fn = partial(np.swapaxes, axis1=src_dim, axis2=dst_dim)
|
|
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
|
|
|
|
# Move dim to same position
|
|
x = torch.randn(2, 3, 5, 7, 11)
|
|
partial_map = {
|
|
torch.swapdims: partial(torch.swapdims, dim0=0, dim1=0),
|
|
torch.swapaxes: partial(torch.swapaxes, axis0=0, axis1=0),
|
|
torch.transpose: partial(torch.transpose, dim0=0, dim1=0),
|
|
}
|
|
torch_fn = partial_map[fn]
|
|
np_fn = partial(np.swapaxes, axis1=0, axis2=0)
|
|
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
|
|
|
|
def _test_atleast_dim(self, torch_fn, np_fn, device, dtype):
|
|
for ndims in range(0, 5):
|
|
shape = _rand_shape(ndims, min_size=5, max_size=10)
|
|
for n in range(ndims + 1):
|
|
for with_extremal in [False, True]:
|
|
for contiguous in [False, True]:
|
|
# Generate Input.
|
|
x = _generate_input(shape, dtype, device, with_extremal)
|
|
if contiguous:
|
|
x = x.T
|
|
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
|
|
|
|
# Compare sequence input
|
|
torch_sequence_x = (x,) * random.randint(3, 10)
|
|
np_sequence_x = tuple(np.array(x.detach().cpu().numpy()) for x in torch_sequence_x)
|
|
torch_res = torch_fn(*torch_sequence_x)
|
|
np_res = np_fn(*np_sequence_x)
|
|
|
|
torch_res = tuple(x.cpu() for x in torch_res)
|
|
np_res = tuple(torch.from_numpy(x) for x in np_res)
|
|
self.assertEqual(np_res, torch_res)
|
|
|
|
# TODO: are these view ops?
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) +
|
|
torch.testing.get_all_complex_dtypes()))
|
|
def test_atleast(self, device, dtype):
|
|
self._test_atleast_dim(torch.atleast_1d, np.atleast_1d, device, dtype)
|
|
self._test_atleast_dim(torch.atleast_2d, np.atleast_2d, device, dtype)
|
|
self._test_atleast_dim(torch.atleast_3d, np.atleast_3d, device, dtype)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_broadcast_tensors(self, device, dtype):
|
|
x0 = torch.randn(2, 1, 3, dtype=dtype, device=device)
|
|
x1 = torch.randn(3, dtype=dtype, device=device)
|
|
x2 = torch.randn(3, 1, dtype=dtype, device=device)
|
|
expected_size = (2, 3, 3)
|
|
|
|
y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2)
|
|
self.assertTrue(y0.size() == expected_size)
|
|
self.assertTrue(y1.size() == expected_size)
|
|
self.assertTrue(y2.size() == expected_size)
|
|
|
|
|
|
@onlyCPU
|
|
def test_broadcast_shapes(self, device):
|
|
examples = [(), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2)]
|
|
for s0 in examples:
|
|
x0 = torch.randn(s0)
|
|
expected = torch.broadcast_tensors(x0)[0].shape
|
|
actual = torch.broadcast_shapes(s0)
|
|
self.assertEqual(expected, actual)
|
|
|
|
for s1 in examples:
|
|
x1 = torch.randn(s1)
|
|
expected = torch.broadcast_tensors(x0, x1)[0].shape
|
|
actual = torch.broadcast_shapes(s0, s1)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Skip BFloat16 since numpy does not support it
|
|
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False))
|
|
def test_broadcast_to(self, device, dtype):
|
|
def can_broadcast(s0, s1):
|
|
# s0.dim() <= s1.dim(), reverse s0 and s1 to compare trailing dimension
|
|
s0 = tuple(reversed(s0))
|
|
s1 = tuple(reversed(s1))
|
|
for i in range(len(s0)):
|
|
if s0[i] != 1 and s0[i] != s1[i]:
|
|
return False
|
|
return True
|
|
|
|
sizes = (
|
|
(), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2)
|
|
)
|
|
for s0, s1 in combinations(sizes, r=2):
|
|
t = make_tensor(s0, device, dtype, low=-9, high=9)
|
|
t_np = t.cpu().numpy()
|
|
|
|
if can_broadcast(s0, s1):
|
|
res = torch.broadcast_to(t, s1)
|
|
np_res = np.broadcast_to(t_np, s1)
|
|
self.assertEqual(res, np_res)
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"The expanded size of the tensor \(\d\) "
|
|
r"must match the existing size \(\d\)"):
|
|
torch.broadcast_to(t, s1)
|
|
|
|
def test_view(self, device):
|
|
tensor = torch.rand(15, device=device)
|
|
template = torch.rand(3, 5, device=device)
|
|
empty = torch.empty(0, device=device)
|
|
target = template.size()
|
|
self.assertEqual(tensor.view_as(template).size(), target)
|
|
self.assertEqual(tensor.view(3, 5).size(), target)
|
|
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
|
|
self.assertEqual(tensor.view(-1, 5).size(), target)
|
|
self.assertEqual(tensor.view(3, -1).size(), target)
|
|
tensor_view = tensor.view(5, 3)
|
|
tensor_view.fill_(random.uniform(0, 1))
|
|
self.assertEqual(empty.view_as(empty), empty)
|
|
self.assertEqual(empty.view(0), empty)
|
|
self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1]))
|
|
self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty)
|
|
|
|
# test size inference with empty tensors
|
|
self.assertEqual(empty.view(-1).size(), torch.Size([0]))
|
|
self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0]))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(-1, 0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(3, 0, -1, 0)
|
|
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
|
|
|
|
# test view when tensor is not contiguous in every dimension, but only
|
|
# contiguous dimensions are touched.
|
|
tensor = torch.rand(4, 2, 5, 1, 6, 2, 9, 3, device=device).transpose(-1, 2).transpose(-2, 3)
|
|
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
|
|
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
|
|
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
|
|
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
|
|
contig_tensor = tensor.clone()
|
|
# [4, 2] => [8, 1]
|
|
# [3] => [3]
|
|
# [9] => [3, 3]
|
|
# [6, 2] => [4, 1, 3]
|
|
# [1, 5] => [5]
|
|
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# [4, 2] => [2, 4]
|
|
# [3] => [3]
|
|
# [9] => [1, 9]
|
|
# [6, 2] => [2, 2, 3]
|
|
# [1, 5] => [5, 1]
|
|
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# adding size 1 dims
|
|
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
|
|
# invalid views
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
|
|
# crossing [4, 2], [3]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
|
|
# crossing [6, 2], [1, 5]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
|
|
# crossing [9], [6, 2]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
|
|
|
|
# view with stride 0 dims
|
|
tensor = torch.empty(1, 1, device=device).expand(3, 4) # all dims are contiguous
|
|
contig_tensor = tensor.clone()
|
|
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
|
|
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
|
|
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
|
|
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
|
|
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
|
|
|
|
def test_contiguous(self, device):
|
|
x = torch.randn(1, 16, 5, 5, device=device)
|
|
self.assertTrue(x.is_contiguous())
|
|
stride = list(x.stride())
|
|
stride[0] = 20
|
|
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
|
|
x.set_(x.storage(), 0, x.size(), stride)
|
|
self.assertTrue(x.is_contiguous())
|
|
|
|
@onlyOnCPUAndCUDA
|
|
# Skip BFloat16 since numpy does not support it
|
|
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False))
|
|
def test_tensor_split_sections(self, device, dtype):
|
|
input_sizes = [
|
|
(0,),
|
|
(10,),
|
|
(10, 0),
|
|
(0, 10),
|
|
(4, 10),
|
|
(12, 3),
|
|
]
|
|
for input_size in input_sizes:
|
|
a_base = make_tensor(input_size, device, dtype, low=-9, high=9)
|
|
# Run tests on transposed input if it has at least 2 dims
|
|
for a in [a_base, a_base.t()] if a_base.dim() > 2 else [a_base]:
|
|
a_n = a.cpu().numpy()
|
|
for dim in range(-a.dim(), a.dim()):
|
|
for sections in range(1, 2 * a.size(dim)):
|
|
msg = f'input_size {input_size}, sections {sections}, dim {dim}'
|
|
result1 = torch.tensor_split(a, sections, dim)
|
|
result2 = torch.tensor_split(a, torch.tensor(sections, dtype=torch.int64), dim)
|
|
for r1, r2 in zip(result1, result2):
|
|
self.assertEqual(r1.device, torch.device(device), msg=msg)
|
|
self.assertEqual(r1.dtype, dtype, msg=msg)
|
|
self.assertEqual(r2.device, torch.device(device), msg=msg)
|
|
self.assertEqual(r2.dtype, dtype, msg=msg)
|
|
result_n = np.array_split(a_n, sections, dim)
|
|
self.assertEqual(result_n, result1, msg=msg)
|
|
self.assertEqual(result_n, result2, msg=msg)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
# Skip BFloat16 since numpy does not support it
|
|
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False))
|
|
def test_tensor_split_indices(self, device, dtype):
|
|
input_sizes = [
|
|
(0,),
|
|
(10,),
|
|
(10, 0),
|
|
(0, 10),
|
|
(4, 10),
|
|
(12, 3),
|
|
]
|
|
indices_args = [
|
|
(),
|
|
(0,),
|
|
(3,),
|
|
(10,),
|
|
(-1,),
|
|
(-10,),
|
|
(2, -1),
|
|
(3, 4, 10),
|
|
(0, -1, 0, 10),
|
|
(1, 5, 2, 8),
|
|
]
|
|
for input_size in input_sizes:
|
|
a_base = make_tensor(input_size, device, dtype, low=-9, high=9)
|
|
# Run tests on transposed input if it has at least 2 dims
|
|
for a in [a_base, a_base.t()] if a_base.dim() > 2 else [a_base]:
|
|
a_n = a.cpu().numpy()
|
|
for dim in range(-a.dim(), a.dim()):
|
|
for indices in indices_args:
|
|
result_1 = torch.tensor_split(a, indices, dim)
|
|
result_2 = torch.tensor_split(a, torch.tensor(indices, dtype=torch.int64), dim)
|
|
|
|
msg = f'input_size {input_size}, indices {indices}, dim {dim}'
|
|
for r1, r2 in zip(result_1, result_2):
|
|
self.assertEqual(r1.device, torch.device(device), msg=msg)
|
|
self.assertEqual(r1.dtype, dtype, msg=msg)
|
|
self.assertEqual(r2.device, torch.device(device), msg=msg)
|
|
self.assertEqual(r2.dtype, dtype, msg=msg)
|
|
|
|
result_n = np.array_split(a_n, indices, dim)
|
|
self.assertEqual(result_n, result_1, msg=msg)
|
|
self.assertEqual(result_n, result_2, msg=msg)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_tensor_split_errors(self, device):
|
|
S = 10
|
|
test_cases = [
|
|
# input size, sections or indices, dim, error type, error message, numpy error type
|
|
[(S,), 10, 1, IndexError, r'Dimension out of range', IndexError],
|
|
[(), 10, 0, RuntimeError, r'tensor_split expected at least a 1-dimensional tensor, '
|
|
+ 'but got a tensor with 0 dims', IndexError],
|
|
[(S,), (10,), 1, IndexError, r'Dimension out of range', IndexError],
|
|
[(), (10,), 0, RuntimeError, r'tensor_split expected at least a 1-dimensional tensor, '
|
|
+ 'but got a tensor with 0 dims', IndexError],
|
|
[(S,), 0, 0, RuntimeError, r'number of sections must be larger than 0, got 0', ValueError],
|
|
[(S,), -1, 0, RuntimeError, r'number of sections must be larger than 0, got -1', ValueError],
|
|
]
|
|
for input_size, sections_or_indices, dim, err, err_msg, numpy_err in test_cases:
|
|
a = torch.randn(input_size, device=device)
|
|
msg = f'input_size {input_size}, sections_or_indices {sections_or_indices}, dim {dim}'
|
|
with self.assertRaisesRegex(err, err_msg, msg=msg):
|
|
torch.tensor_split(a, sections_or_indices, dim)
|
|
with self.assertRaisesRegex(err, err_msg, msg=msg):
|
|
torch.tensor_split(a, torch.tensor(sections_or_indices), dim)
|
|
with self.assertRaises(numpy_err, msg=msg):
|
|
np.array_split(a.cpu().numpy(), sections_or_indices, dim)
|
|
|
|
# addtional tests for tensor_split with tensor_indices_or_sections
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r'tensor_split expected tensor_indices_or_sections to have dtype of long, but got Float'):
|
|
torch.tensor_split(a, torch.tensor(1.1), dim)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r'tensor_split expected tensor_indices_or_sections to be a'
|
|
+ ' zero-dimensional or one-dimensional tensor, but got a tensor with 2 dims'):
|
|
torch.tensor_split(torch.rand(S, device=device), torch.tensor(((1,),)), 0)
|
|
|
|
def test_resize_all_dtypes_and_devices(self, device):
|
|
shape = (2, 2)
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
x.resize_(shape)
|
|
self.assertEqual(shape, x.shape)
|
|
|
|
def test_resize_as_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device)
|
|
x.resize_as_(y)
|
|
self.assertEqual(y.shape, x.shape)
|
|
|
|
def test_view_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
self.assertEqual(x.view(6).shape, [6])
|
|
|
|
|
|
instantiate_device_type_tests(TestViewOps, globals())
|
|
instantiate_device_type_tests(TestOldViewOps, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|