Files
pytorch/torch/csrc/jit/mobile/function.cpp
Martin Yuan 30a7c768d7 [RFC] Modularize functions of parsing bytecode (#61862)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61862

Modularize functions of parsing bytecode tables so that they can be used as needed in situations other than mobile lite interpreter.
* The decoupled functions are re-used by current lite interpreter loader.
* The bytecode can be serialized/deserialized from other formats.
* The decoupled functions have minimum dependencies on other PyTorch components.

Next:
Build a driver binary to include the parser and interpreter, but only has necessary dependency on other PyTorch components.
ghstack-source-id: 137867287

Test Plan:
As an example, a simple bytecode is parsed to a mobile function, and directly run in the added unit test, `RunTimeTest:ParseBytecode`. It contains basic control flow (if, else) and basic data orchestration (list construction).
CI

Reviewed By: larryliu0820

Differential Revision: D29798382

Pulled By: iseeyuan

fbshipit-source-id: 1c173a5f5d37097e3a97baec3f3e48e1eea1400f
2021-09-11 22:24:05 -07:00

205 lines
7.0 KiB
C++

#include <torch/csrc/jit/mobile/function.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/runtime/operator.h>
namespace torch {
namespace jit {
char const* toString(OpCode op);
namespace mobile {
Function::Function(c10::QualifiedName name)
: name_(std::move(name)), code_(std::make_shared<Code>()) {}
const c10::QualifiedName& Function::qualname() const {
return name_;
}
const std::string& Function::name() const {
return name_.name();
}
void Function::append_instruction(OpCode op, int X, int N, int64_t dbg_handle) {
TORCH_CHECK(
isOpSupportedInMobile(op),
toString(op),
" is not supported in mobile module.");
code_->instructions_with_handles_.emplace_back(
Instruction(op, X, N), dbg_handle);
}
bool Function::append_operator(
const std::string& name,
const std::string& overload_name,
const c10::optional<int>& num_specified_args,
int64_t model_version, /* TODO: T90339189 deprecate all v3 when v3 models
are removed */
OperatorCacheType& operator_cache) {
// TODO: The c10::OperatorName class contains 2 std::string members, one
// for the operator name, and one for the overload name. Creating a new
// object of type c10::OperatorName creates these 2 strings, which cause
// a heap memory allocation for each element element in code->opnames_.
// This can be a significant perf. overhead for models that have a very
// large list of operators.
// Keep the original opname in code_
code_->op_names_.emplace_back(name, overload_name);
const auto& opname = code_->op_names_.back();
const auto& opname_c10 = opname;
std::function<void(Stack&)> fn;
auto it = operator_cache.find(opname);
if (it != operator_cache.end()) {
// Operator (with fully qualified name) was found in the cache.
if (it->second.has_same_arg_num(num_specified_args)) {
// And it has the same number (or unspecified number) or arguments.
code_->operators_.emplace_back(it->second.fn);
return true;
}
// Operator found, but different argument list or specified/unspecified.
// Fall back to creating one from scratch.
}
auto jit_op = findOperatorFor(opname);
const std::vector<c10::Argument>* pArgs = nullptr;
if (jit_op) {
fn = [jit_op](Stack& stack) { jit_op->getOperation()(stack); };
pArgs = &jit_op->schema().arguments();
} else {
auto op = c10::Dispatcher::singleton().findSchema(opname_c10);
if (op.has_value()) {
fn = [op](Stack& stack) { op->callBoxed(&stack); };
if (op->hasSchema()) {
pArgs = &op->schema().arguments();
} else {
TORCH_CHECK(false, "arguments are missing for operator ", opname);
}
} else {
return false;
}
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(pArgs);
const auto& args = *pArgs;
if (model_version == 0x3LL &&
opname == c10::OperatorName("aten::_convolution", "")) {
// Since byte-code versions 0x4L, convolution has an additional
// default-value argument (allow_tf32=True, see
// https://github.com/pytorch/pytorch/pull/40737). This wrapper handles
// backward compatibility with models of byte-code version <= 0x3L, where
// this bool argument does not yet exist.
fn = [fn](Stack& stack) {
stack.push_back(true);
fn(stack);
};
} else {
// num_specified_args >= 0 indicates number of arguments are available
// from model. We can use it to handle backward compatibility.
if (num_specified_args &&
num_specified_args.value() < static_cast<int64_t>(args.size())) {
fn = [fn, num_specified_args, args](Stack& stack) {
std::vector<IValue> out_args;
// The following logic pops and temporarily stores all out arguments
// from the stack (which can be 0 or more, and always appended to the
// schema), in order to push the necessary default values. Finally, the
// out arguments are pushed back into the stack.
for (size_t i = args.size() - 1; i > 0 && args.at(i).is_out(); i--) {
out_args.push_back(stack.back());
stack.pop_back();
}
size_t start_index = num_specified_args.value() - out_args.size();
TORCH_CHECK(
start_index >= 0,
"The number of output arguments is: ",
out_args.size(),
", which is more then the number of specified arguments: ",
num_specified_args.value());
for (size_t i = start_index; i < (args.size() - out_args.size()); ++i) {
TORCH_CHECK(
args[i].default_value().has_value(),
"Error happened at preparing for default values for the argument. The ",
i,
"th argument ",
args[i].name(),
" does not have a specified value or default value. ");
stack.push_back(args[i].default_value());
}
stack.insert(stack.end(), out_args.rbegin(), out_args.rend());
fn(stack);
};
}
}
code_->operators_.emplace_back(fn);
if (it == operator_cache.end()) {
// We came here because the operator name wasn't found in the cache,
// not because there was a schema mismatch. Do add into the cache.
operator_cache.insert(std::make_pair(
opname, OperatorFunctionWithSchema{fn, num_specified_args}));
}
return true;
}
void Function::append_constant(const c10::IValue& constant) {
code_->constants_.push_back(constant);
}
void Function::append_type(const at::TypePtr& type) {
code_->types_.push_back(type);
}
void Function::set_register_size(size_t size) {
code_->register_size_ = size;
}
int64_t Function::get_debug_handle(size_t pc) const {
TORCH_CHECK(code_, "Valid code must exist.");
TORCH_CHECK(
pc < code_->instructions_with_handles_.size(),
"Module debug info index out of boundary.");
return code_->instructions_with_handles_[pc].debug_handle;
}
void Function::setSchema(c10::FunctionSchema schema) {
schema_ = std::move(schema);
}
const at::optional<c10::FunctionSchema>& Function::getSchema() const {
return schema_;
}
bool Function::run(Stack& stack) const {
const auto& schema = getSchema();
if (schema) { // if we have a schema then resolve optional args if any
schema->checkAndNormalizeInputs(
stack, std::unordered_map<std::string, IValue>{} /*kwargs*/);
}
InterpreterState interp_state(code_);
return interp_state.run(stack);
}
c10::IValue Function::operator()(Stack& stack) const {
run(stack);
return stack.front();
}
const std::shared_ptr<Code> Function::get_code() const {
return code_;
}
int64_t Function::getExceptionDebugHandle() const {
size_t pc = getInterpretersExceptionPC();
// we dont do bounds check given that pc is obtained
// via internal method of getInterpretersExceptionPC
// which returns the PC of where the interpreter is.
// Although .at will do bounds check anyway.
return code_->instructions_with_handles_.at(pc).debug_handle;
}
} // namespace mobile
} // namespace jit
} // namespace torch