Files
pytorch/benchmarks/tensorexpr/pooling.py
Kevin Stephano 26a91a9f04 [WIP][JIT] Add benchmarking support of NV Fuser with FP16 dtype support (#44101)
Summary:
Modified files in `benchmarks/tensorexpr` to add support for NVIDIA's Fuser for the jit compiler.

This support has some modifications besides adding an option to support the NVIDIA fuser:

* Adds FP16 Datatype support
* Fixes SOL/Algo calculations to generally use the data type instead of being fixed to 4 bytes
* Adds IR printing and kernel printing knobs
* Adds a knob `input_iter` to create ranges of inputs currently only for reductions
* Adds further reduction support for Inner and Outer dimension reductions that are compatible with the `input_iter` knob.
* Added `simple_element`, `reduce2d_inner`, and `reduce2d_outer` to isolate performance on elementwise  and reduction operations in the most minimal fashion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44101

Reviewed By: ngimel

Differential Revision: D23713658

Pulled By: bertmaher

fbshipit-source-id: d6b83cfab559aefe107c23b3c0f2df9923b3adc1
2020-09-15 15:10:49 -07:00

66 lines
1.7 KiB
Python

from . import benchmark
class PoolingBench(benchmark.Benchmark):
def __init__(self, case, mode, device, dtype, kernel_size, N, C, H, W):
super().__init__(mode, device)
self.case = case
self.kernel_size = kernel_size
self.N = N
self.C = C
self.H = H
self.W = W
self.data = self.rand(
[N, C, H, W], device=device, dtype=dtype, requires_grad=self.requires_grad
)
def forward(self):
if self.case == "maxpool":
y = self.max_pool2d(self.data, self.kernel_size, stride=1)
elif self.case == "avgpool":
y = self.avg_pool2d(self.data, self.kernel_size, stride=1)
return y
def config(self):
return [self.kernel_size, self.N, self.C, self.H, self.W]
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1 + 1
algorithmic_count = 1 + 1
else:
sol_count = (1 + 1) + (1 + 1)
algorithmic_count = (1 + 1) + (2 + 1)
buffer_size = self.N * self.C * self.H * self.W
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
@staticmethod
def default_configs():
return [[3, 16, 32, 256, 256]]
class MaxPoolBench(PoolingBench):
def __init__(self, *args):
super().__init__("maxpool", *args)
@staticmethod
def module():
return "maxpool"
class AvgPoolBench(PoolingBench):
def __init__(self, *args):
super().__init__("avgpool", *args)
@staticmethod
def module():
return "avgpool"
benchmark.register_benchmark_class(MaxPoolBench)
benchmark.register_benchmark_class(AvgPoolBench)