Files
pytorch/test/test_foreach.py
iurii zdebskyi 2f044d4ee5 Fix CI build (#44068)
Summary:
Some of our machines have only 1 device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44068

Reviewed By: wanchaol

Differential Revision: D23485730

Pulled By: izdeby

fbshipit-source-id: df6bc0aba18feefc50c56a8f376103352fa2a2ea
2020-09-02 17:09:30 -07:00

218 lines
10 KiB
Python

import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
class TestForeach(TestCase):
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
int_scalar = 1
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected = [torch.ones(10, 10, device=device, dtype=torch.int64) for _ in range(10)]
else:
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, int_scalar)
self.assertEqual(res, expected)
if dtype in [torch.bool]:
with self.assertRaisesRegex(RuntimeError,
"result type Long can't be cast to the desired output type Bool"):
torch._foreach_add_(tensors, int_scalar)
else:
torch._foreach_add_(tensors, int_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
float_scalar = 1.
# float scalar + integral tensor will result in float tensor
if dtype in [torch.uint8, torch.int8, torch.int16,
torch.int32, torch.int64, torch.bool]:
expected = [torch.ones(10, 10, device=device, dtype=torch.float32) for _ in range(10)]
else:
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, float_scalar)
self.assertEqual(res, expected)
if dtype in [torch.uint8, torch.int8, torch.int16,
torch.int32, torch.int64, torch.bool]:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, float_scalar))
else:
torch._foreach_add_(tensors, float_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
complex_scalar = 3 + 5j
# bool tensor + 1 will result in int64 tensor
expected = [torch.add(complex_scalar, torch.zeros(10, 10, device=device, dtype=dtype)) for _ in range(10)]
if dtype in [torch.float16, torch.float32, torch.float64, torch.bfloat16] and device == 'cuda:0':
# value cannot be converted to dtype without overflow:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar))
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, complex_scalar))
return
res = torch._foreach_add(tensors, complex_scalar)
self.assertEqual(res, expected)
if dtype not in [torch.complex64, torch.complex128]:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar))
else:
torch._foreach_add_(tensors, complex_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
bool_scalar = True
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, bool_scalar)
self.assertEqual(res, expected)
torch._foreach_add_(tensors, bool_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_different_size_tensors(self, device, dtype):
if dtype == torch.bool:
return
tensors = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
expected = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
torch._foreach_add_(tensors, 1)
self.assertEqual(expected, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_overlapping_tensors(self, device, dtype):
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
expected = [torch.tensor([[[2, 2, 2]], [[2, 2, 2]]], dtype=dtype, device=device)]
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected[0] = expected[0].to(torch.int64).add(1)
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, expected)
def test_add_scalar_with_different_tensor_dtypes(self, device):
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, 1))
def test_add_list_error_cases(self, device):
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaises(RuntimeError):
torch._foreach_add(tensors1, tensors2)
with self.assertRaises(RuntimeError):
torch._foreach_add_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have at least one tensor."):
torch._foreach_add(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have at least one tensor."):
torch._foreach_add_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
torch._foreach_add(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
torch._foreach_add_(tensors1, tensors2)
# Different dtypes
tensors1 = [torch.zeros(10, 10, device=device, dtype=torch.float) for _ in range(10)]
tensors2 = [torch.ones(10, 10, device=device, dtype=torch.int) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
torch._foreach_add(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
torch._foreach_add_(tensors1, tensors2)
# different devices
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0")
tensor2 = torch.ones(10, 10, device="cuda:1")
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
torch._foreach_add([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
torch._foreach_add_([tensor1], [tensor2])
# Coresponding tensors with different sizes
tensors1 = [torch.zeros(10, 10, device=device) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "Corresponding tensors in lists must have the same size"):
torch._foreach_add(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, r", got \[10, 10\] and \[11, 11\]"):
torch._foreach_add_(tensors1, tensors2)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_same_size(self, device, dtype):
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors1, tensors2)
torch._foreach_add_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(res[0], torch.ones(10, 10, device=device, dtype=dtype))
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_different_sizes(self, device, dtype):
tensors1 = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
tensors2 = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
res = torch._foreach_add(tensors1, tensors2)
torch._foreach_add_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(res, [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_slow_path(self, device, dtype):
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
res = torch._foreach_add([tensor1], [tensor2.t()])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
# non contiguous
tensor1 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
tensor2 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
res = torch._foreach_add([tensor1], [tensor2])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()