Files
pytorch/torch/csrc/jit/codegen/cuda/graph_fuser.cpp
Scott Wolchok 2d885ab73d [jit] Reduce refcounting of Types (#65345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345

FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165

Test Plan:
CI

perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.

Reviewed By: hlu1

Differential Revision: D31027361

fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
2021-10-08 09:03:04 -07:00

1907 lines
73 KiB
C++

#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <torch/csrc/jit/codegen/cuda/partition.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/pass_manager.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <queue>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
constexpr size_t NVRTC_KERNEL_ARG_LIMIT = 128;
namespace {
bool usedOnlyInDtype(Value* v) {
const auto& uses = v->uses();
if (uses.empty()) {
return false;
}
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("prim::dtype(Tensor a) -> int");
});
}
Value* broadcastSizes(at::ArrayRef<Value*> sizes) {
AT_ASSERT(!sizes.empty());
Graph* graph = sizes[0]->owningGraph();
Node* broadcast_n =
graph->insertNode(graph->create(prim::BroadcastSizes, sizes));
broadcast_n->output()->setType(ListType::ofInts());
return broadcast_n->output();
}
Value* createConditionalConstant(Node* profile_ivalue) {
TORCH_INTERNAL_ASSERT(profile_ivalue->kind() == prim::profile_ivalue);
auto graph = profile_ivalue->owningGraph();
IValue val; // default to None
if (profile_ivalue->hasAttribute(Symbol::attr("profiled_int_list"))) {
// int[]
val = IValue(profile_ivalue->is(Symbol::attr("profiled_int_list")));
} else if (profile_ivalue->hasAttribute(Symbol::attr("profiled_bool_list"))) {
// bool[]
auto int_list = profile_ivalue->is(Symbol::attr("profiled_bool_list"));
std::vector<bool> bool_list(int_list.begin(), int_list.end());
val = IValue(bool_list);
} else if (profile_ivalue->hasAttribute(Symbol::attr("profiled_size"))) {
// int[]
val = IValue(profile_ivalue->is(Symbol::attr("profiled_size")));
} else if (profile_ivalue->hasAttribute(Symbol::attr("profiled_bool"))) {
// bool
val = IValue(
static_cast<bool>(profile_ivalue->i(Symbol::attr("profiled_bool"))));
} else if (profile_ivalue->hasAttribute(Symbol::attr("profiled_int"))) {
// int
val = IValue(
static_cast<int>(profile_ivalue->i(Symbol::attr("profiled_int"))));
} else {
GRAPH_DEBUG("profile_ivalue: ", *profile_ivalue);
TORCH_WARN(
__func__,
" profile_node ",
*profile_ivalue,
" does not have profile information");
return nullptr;
}
return graph->insertConstant(val);
}
struct CudaGraphFuser {
using FusionCallback = std::function<bool(Node*)>;
Block* block_;
std::unique_ptr<AliasDb> aliasDb_;
std::shared_ptr<Graph> graph_;
Symbol kind_ = prim::CudaFusionGroup;
// nvrtc has a limit on the number of arguments allowed in a CUDA kernel.
// The specific limit is a function of constant memory size, amount available
// to pass arguments, and some implementation dependence. Select a safe
// limit here.
// This limit is also applied to other devices in the fuser by default.
// Change with setInputArgLimit
size_t subgraph_arg_limit_ = NVRTC_KERNEL_ARG_LIMIT;
CudaGraphFuser(Block* block, std::shared_ptr<Graph> graph)
: block_(block), graph_(std::move(graph)) {}
void setInputArgLimit(size_t limit) {
subgraph_arg_limit_ = limit;
}
value_list tensorInputs(Node* node) {
return filter(node->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
}
bool calculatesSize(Node* node) {
return node->matches("aten::size(Tensor self) -> int[]");
}
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
auto defining_node = producer->node();
for (auto o : defining_node->outputs()) {
for (auto u : o->uses()) {
if (u.user != consumer && !calculatesSize(u.user))
return false;
}
}
return true;
}
Graph& getSubgraph(Node* n) {
AT_ASSERT(n->kind() == kind_);
return *n->g(attr::Subgraph);
}
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
// Now we have two fusion groups!
// Revert the fusion - place all inner nodes of producer back in the outer
// graph.
std::vector<Node*> temporary_nodes;
auto producer_subgraph = &getSubgraph(producer_group);
// Initialize a map of inner graph values to outer graph values
std::unordered_map<Value*, Value*> inner_to_outer;
auto inner_inputs = producer_subgraph->inputs();
auto outer_inputs = producer_group->inputs();
for (const auto i : c10::irange(inner_inputs.size())) {
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
}
// Clone all nodes
for (auto inner : producer_subgraph->nodes()) {
Node* outer = block_->owningGraph()->createClone(
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
outer->insertBefore(producer_group);
temporary_nodes.emplace_back(outer);
auto inner_outputs = inner->outputs();
auto outer_outputs = outer->outputs();
for (const auto i : c10::irange(inner_outputs.size())) {
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
}
}
// Replace uses of producer_group outputs and destroy the producer
auto subgraph_outputs = producer_subgraph->outputs();
for (const auto i : c10::irange(subgraph_outputs.size())) {
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
}
producer_group->destroy();
producer_group =
nullptr; // Just to get a clear error in case someone uses it
// Inline the temporary nodes into the first group
auto consumer_subgraph = &getSubgraph(consumer_group);
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
++it) {
Node* node = *it;
Node* merged = mergeNodeIntoGroup(consumer_group, node);
// If any of the outputs are still used then we need to add them
auto outputs = node->outputs();
for (const auto i : c10::irange(outputs.size())) {
auto output = outputs[i];
if (output->uses().size() == 0)
continue;
consumer_subgraph->registerOutput(merged->outputs()[i]);
auto new_output = consumer_group->addOutput();
output->replaceAllUsesWith(new_output);
new_output->setType(output->type());
}
node->destroy();
}
}
// insert a producer node into a consuming fusion group.
// DOES NOT WORK if n is a consumer of an output of the fusion group
// returns the node _inside_ the group that represents the node
Node* mergeNodeIntoGroup(Node* group, Node* n) {
AT_ASSERT(n->kind() != kind_);
auto& subgraph = getSubgraph(group);
// map from nodes in the surrounding graph to parameters in the fusion
// group's subgraph that correspond to them
std::unordered_map<Value*, Value*> inputs_map;
size_t i = 0;
size_t tensor_insert_idx = 0;
for (auto input : group->inputs()) {
inputs_map[input] = subgraph.inputs()[i++];
if (input->type()->isSubtypeOf(*TensorType::get()))
tensor_insert_idx = i;
}
// add n's inputs to the fusion group's input list if we don't already have
// them
// we insert tensors first because the fuser assumes that to be the case
// (as a legacy from tensors only)
WithInsertPoint guard(*subgraph.nodes().begin());
for (auto input : n->inputs()) {
if (inputs_map.count(input) == 0) {
// TODO: we are following the convention for no good reason;
// we don't need tensor to come before any other inputs.
if (input->type()->isSubtypeOf(*TensorType::get())) {
auto in_group = subgraph.insertInput(tensor_insert_idx);
in_group->setType(input->type());
inputs_map[input] = in_group;
group->insertInput(tensor_insert_idx, input);
tensor_insert_idx++;
} else if (
// TODO: extend the supporting inputs here.
(input->type()->isSubtypeOf(*FloatType::get()) &&
input->node()->kind() != prim::Constant)) {
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
} else if (input->node()->kind() == prim::Constant) {
// inline the constants directly in the body of the fused group.
Node* in_const =
subgraph.createClone(input->node(), [&](Value* v) -> Value* {
if (v->node()->kind() != prim::profile_ivalue) {
throw std::runtime_error(
std::string(
"merging constant with unexpected input from node") +
v->node()->kind().toDisplayString());
}
group->addInput(v->node()->output());
// we are doing this just to keep alias_analysis silent with
// their checks
auto in_group = subgraph.addInput();
in_group->setType(v->type());
return in_group;
});
subgraph.insertNode(in_const);
inputs_map[input] = in_const->output();
} else {
// TODO: we need to figure out what are supported input scalar
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
}
}
}
// copy n into the graph, remapping its inputs to internal nodes
Node* in_graph = subgraph.createClone(
n, [&](Value* k) -> Value* { return inputs_map[k]; });
// if n's outputs are already inputs to the fusion group,
// we need to remove them because n is now inside the fusion group.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
//
// remapping nodes that used the input to the newly-merged node
// n is not an input when the fusion group is empty
auto inputs = group->inputs();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
group->removeInput(p);
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
subgraph.eraseInput(p);
}
}
return subgraph.insertNode(in_graph);
}
// turn consumer node n into a fusion group with just n inside
// to prepare for fusion and replace uses of n with the new group
Node* createSingletonFusionGroup(Node* n) {
auto group = block_->owningGraph()->createWithSubgraph(kind_);
// propogate position information for the new node so we can always
// have a valid mapping
group->insertBefore(n);
Node* mergedNode = mergeNodeIntoGroup(group, n);
for (size_t i = 0; i < n->outputs().size(); i++) {
getSubgraph(group).registerOutput(mergedNode->output(i));
auto sel = group->addOutput();
sel->copyMetadata(n->output(i));
}
n->replaceAllUsesWith(group);
n->destroy();
return group;
}
at::optional<Node*> tryFuse(Node* consumer, Value* producer) {
// this handles cases where producer can be moved _into_ the fusion group of
// consumer.
// TODO: extend to fusion of consumer into _producer's_ fusion blob
// if the consumer allInputsAreThisProducer(consumer,producer)
// we can move the consumer up into the producer.
// but this requires better handling of merging fusion groups so it is not
// done now
bool shouldFuse =
fuser::cuda::isFusibleCudaFusionGroup(consumer, producer->node()) &&
// Rearrange nodes such that all uses of producer are after the
// consumer. Fusion will rewrite those later uses to use the version of
// producer generated by the fused blob. In this case, producer becomes
// an output of the fusion group.
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
if (!shouldFuse) {
return at::nullopt;
}
if ((consumer->inputs().size() + consumer->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > subgraph_arg_limit_) {
return at::nullopt;
}
auto group = consumer;
if (consumer->kind() != kind_) {
group = createSingletonFusionGroup(consumer);
}
if (producer->node()->kind() == kind_) {
mergeFusionGroups(group, producer->node());
return group;
}
Node* merged = mergeNodeIntoGroup(group, producer->node());
// remaining uses of this producer can occur because we allow
// fusion in cases where uses remain after the consumer
// if these exist, re-route them to the version of producer
// created in FusionGroup
// We need to apply this to all outputs from producer->node();
auto producer_outputs = producer->node()->outputs();
for (size_t i = 0; i < producer_outputs.size(); i++) {
if (producer_outputs[i]->uses().size() != 0) {
getSubgraph(group).registerOutput(merged->outputs()[i]);
Value* new_producer = group->addOutput();
new_producer->copyMetadata(producer_outputs[i]);
producer_outputs[i]->replaceAllUsesWith(new_producer);
}
}
producer->node()->destroy();
return group;
}
c10::optional<Node*> findFusedChunk(Node* group, Value* input) {
AT_ASSERT(group->kind() == kind_);
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
if (it == group->inputs().end()) {
return c10::nullopt;
}
size_t input_index = it - group->inputs().begin();
auto& subgraph = getSubgraph(group);
auto* subgraph_input = subgraph.inputs().at(input_index);
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
auto* node = subgraph_input->uses().at(0).user;
if (node->kind() == prim::ConstantChunk) {
AT_ASSERT(subgraph_input->uses().size() == 1);
return node;
}
return c10::nullopt;
}
void fuseChunkByReusingExistingFusedChunk(
Node* group,
Node* chunk,
Node* existingFusedChunk) {
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
return;
}
auto& subgraph = getSubgraph(group);
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
// Find the input to the FusionGroup (group)
auto* replacement_val = existingFusedChunk->outputs().at(i);
auto* val = chunk->outputs().at(i);
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
auto input_index = it - group->inputs().begin();
// Rewrite the graph to use replacement_val
auto group_input = subgraph.inputs().at(input_index);
group_input->replaceAllUsesWith(replacement_val);
// Remove the input, it's no longer needed
group->removeInput(input_index);
subgraph.eraseInput(input_index);
}
chunk->destroy();
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
at::ArrayRef<Value*> broadcast_tensors(value_list inputs) {
AT_ASSERT(inputs.size() > 0);
auto* g = inputs[0]->owningGraph();
auto* input_list =
g->insertNode(g->createList(TensorType::get(), inputs))->output();
auto* output_list = g->insert(aten::broadcast_tensors, {input_list});
auto* unpack_node = g->insertNode(
g->create(prim::ListUnpack, {output_list}, inputs.size()));
return unpack_node->outputs();
}
void insertExplicitBroadcast(Node* node) {
WithInsertPoint insert_guard{node};
auto tensors = tensorInputs(node);
auto new_tensors = broadcast_tensors(tensors);
// Replace tensors inputs with broadcasted values
auto new_tensors_it = new_tensors.begin();
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (node->inputs()[i]->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(new_tensors_it != new_tensors.end());
node->replaceInput(i, *(new_tensors_it++));
}
}
}
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
size_t nchunks = chunk->i(attr::chunks);
Node* bchunk =
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
bchunk->addInput(chunk->input());
for (const auto i : c10::irange(nchunks)) {
auto* old_output = chunk->outputs().at(i);
auto* new_output = bchunk->outputs().at(i);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
bchunk->copyAttributes(*chunk);
bchunk->insertAfter(chunk);
chunk->destroy();
return bchunk;
}
// in places where op can be fused into a consumer but chunk is in the way
// distribute chunk to op's operands:
// replace a,b = chunk(op(x,y,z)) with:
// x', y', z' = broadcast_tensors([x, y, z])
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
// b = op(x1,y1,x1)
//
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
// all of its inputs and then chunks each input, in order, the same way.
// The above graph is equivalent to:
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
// a = op(x0,y0,z0)
// b = op(x1,y1,x1)
//
// NB: The explicit broadcast is important for correctness.
// Let's say we have:
// %z = aten::mul(%x, %y)
// %z.1, %z.2 = aten::chunk(%z, ...)
// ... = prim::CudaFusionGroup(%z.1, %z.2, ...)
// It's possible that %x and %y do not have the same size as %z and
// need to be expanded first so that they can be chunked like %z
//
// NB: Chunk motion only occurs with fusable consumers, which implies
// that there is always some other operation, e.g., a+b, that happens
// after the chunk, and will be put into the fusion group. This is
// important, because distributing the chunk changes the contiguity
// of a and b, and so the results would be invalid, except that we know
// that simple_mappable operations will restore contiguity before
// we exit the fusion group.
//
// NB: The intermediate BroadcastingChunk is important for moving chunks past
// more than one operation: the graph fuser is not able to easily move
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusable
// ops
// x = f(v, w)
// z = g(x, y)
// a, b = chunk(z)
// c = h(a, b)
// becomes (with the broadcast_tensors + chunk approach):
// x = f(v, w)
// x', y' = broadcast_tensors([x, y])
// ax, bx = chunk(x')
// ay, by = chunk(y')
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// The broadcast_tensors node makes it harder to move f into the resulting
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
// together results in:
// x = f(v, w)
// ax, bx, ay, by = BroadcastingChunk(x, y)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// making it easier to move f after the BroadcastingChunk:
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
// ax = f(av, aw)
// by = f(bv, bw)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
bool tryToMoveChunk(Node* consumer, Value* producer) {
// is the output from a chunk/bchunk node?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk &&
chunk->kind() != prim::BroadcastingChunk)
return false;
// try to find a producer to move after the chunk/bchunk. The producer must
// be fusable into the consumer.
auto it = std::find_if(
chunk->inputs().begin(),
chunk->inputs().end(),
[&](Value* producer_for_chunk) {
return fuser::cuda::isFusibleCudaFusionGroup(
consumer, producer_for_chunk->node()) &&
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
});
if (it == chunk->inputs().end()) {
return false;
}
Value* producer_for_chunk = *it;
size_t producer_index = it - chunk->inputs().begin();
// all uses of the chunk must be in in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer)
return false;
}
}
// multiple return operators
Node* producer_for_chunk_node = producer_for_chunk->node();
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
// broadcast and one or more chunk operations.
auto* bchunk = chunk;
if (chunk->kind() == prim::ConstantChunk) {
bchunk = promoteChunkToBroadcastingChunk(chunk);
}
size_t nchunks = bchunk->i(attr::chunks);
TORCH_INTERNAL_ASSERT(nchunks > 0, "number of chunks cannot be zero");
WithInsertPoint guard(bchunk->next());
std::vector<Value*> producer_chunk_outputs;
for (const auto i : c10::irange(nchunks)) {
producer_chunk_outputs.push_back(
bchunk->output(nchunks * producer_index + i));
}
// Add each of op's operands to the bchunk node.
// chunked_inputs[input_nr][chunk_output_idx]
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
std::vector<std::vector<Value*>> chunked_inputs;
// We have asserted single output earlier
auto producer_output_sizes =
producer_for_chunk_node->output()->type()->cast<TensorType>()->sizes();
for (auto input : producer_for_chunk_node->inputs()) {
// XXX: we only work with pointwise ops in here, so we know it is valid to
// push the concat only through tensor arguments (and all other args can
// be safely ignored).
if (!input->type()->isSubtypeOf(*TensorType::get()))
continue;
// if 'input' is already an input to the bchunk, reuse it.
auto bchunk_inputs = bchunk->inputs();
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
if (it != bchunk_inputs.end()) {
chunked_inputs.emplace_back();
const auto input_index = std::distance(bchunk_inputs.begin(), it);
for (const auto chunki : c10::irange(nchunks)) {
chunked_inputs.back().push_back(
bchunk->outputs().at(nchunks * input_index + chunki));
}
continue;
}
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
// copy selects one day, it is definitely not what you want here (selects
// have different types).
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
// to copy select nodes now that we have refactored to have a Value
// distinct from Node.
bchunk->addInput(input);
chunked_inputs.emplace_back(); // alas, to not be C++17
// properly compute strides for BroadcastingChunk
//
// We copy stride of each dimension from input to output for
// BroadcastingChunk. A note is that Chunk should not alter strides,
// However, broadcasted dimension should have a stride 0. We could have
// broadcasting happening on existing dimensions in input (case1), as well
// as extended dimension that does not exist in input (case2).
// e.g.
// If we look at an input tensor t0 with shape [3, 1] broadcasted to
// output tensor t1 with shape [4, 1, 3, 3],
// We set stride to zero in case of broadcast, which could happen in:
// case1: t1.dim[3] (broadcasted as in the description above)
// case2: t1.dim[0] (broadcasted implicitly)
std::vector<int64_t> strides;
auto input_type = input->type()->cast<TensorType>();
auto input_sizes = input_type->sizes();
auto input_strides = input_type->strides();
if (producer_output_sizes.isComplete() && input_sizes.isComplete() &&
input_strides.isComplete()) {
auto input_c_sizes = input_sizes.concrete_sizes().value();
auto input_c_strides = input_strides.concrete_sizes().value();
auto output_c_sizes = producer_output_sizes.concrete_sizes().value();
int output_index = int(output_c_sizes.size()) - 1;
strides.resize(output_index);
AT_ASSERT(output_index >= int(input_c_sizes.size()) - 1);
for (int input_index = int(input_c_sizes.size()) - 1; input_index >= 0;
input_index--, output_index--) {
// in braodcast case 1, we set stride to 0;
// otherwise, stride remain the same.
if (input_c_sizes[input_index] == 1 &&
output_c_sizes[output_index] != 1) {
strides[output_index] = 0;
} else {
strides[output_index] = input_c_strides[input_index];
}
}
// continue on expanding dimensions to set stride to 0 for case2
while (output_index >= 0) {
strides[output_index] =
output_c_sizes[output_index] == 1 ? strides[output_index + 1] : 0;
output_index--;
}
}
for (auto chunk_sel : producer_chunk_outputs) {
Value* input_chunk_sel = bchunk->addOutput();
auto chunk_sel_type = chunk_sel->type()->cast<TensorType>();
if (strides.empty() || !chunk_sel_type->sizes().isComplete()) {
input_chunk_sel->setType(chunk_sel_type);
} else {
input_chunk_sel->setType(chunk_sel_type->withSizesStrides(
chunk_sel_type->sizes().concrete_sizes().value(), strides));
}
chunked_inputs.back().push_back(input_chunk_sel);
}
}
// apply the op to each chunk of the chunked operands,
// and then rewrite the graph to use them!
for (auto chunk_sel : producer_chunk_outputs) {
auto original_inputs = producer_for_chunk_node->inputs();
Node* chunked_op =
block_->owningGraph()->create(producer_for_chunk_node->kind());
chunked_op->copyAttributes(*producer_for_chunk_node);
chunked_op->output()->setType(chunk_sel->type());
auto chunked_inputs_it = chunked_inputs.begin();
for (Value* original_input : original_inputs) {
if (original_input->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
chunked_op->addInput(
// NOLINTNEXTLINE(clang-analyzer-core.DivideZero)
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
++chunked_inputs_it;
} else {
chunked_op->addInput(original_input);
}
}
bchunk->owningGraph()->insertNode(chunked_op);
chunk_sel->replaceAllUsesWith(chunked_op->output());
}
bchunk->removeInput(producer_index);
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores,clang-diagnostic-unused-variable)
for (const auto i : c10::irange(nchunks)) {
(void)i; // Suppress unused variable warning
bchunk->eraseOutput(nchunks * producer_index);
}
// The output of producer_for_chunk_node could have been used in some
// aten::size operators, so we need to clean those up as well (we simply
// broadcast all its tensor inputs).
// We need to insert these early in the graph, i.e. immediately after
// the producer_for_chunk_node as we will have the _size_if_not_same
// that may be before the bchunk.
WithInsertPoint guard2(producer_for_chunk_node);
auto size_calc_uses = producer_for_chunk_node->output()->uses();
if (!size_calc_uses.empty()) {
auto tensor_inputs = filter(
producer_for_chunk_node->inputs(),
[](Value* v) { return v->type()->isSubtypeOf(*TensorType::get()); });
auto tensor_sizes = fmap(tensor_inputs, [](Value* v) {
return v->owningGraph()->insert(aten::size, {v});
});
AT_ASSERT(!tensor_sizes.empty());
Value* output_size = tensor_sizes.size() == 1
? tensor_sizes[0]
: broadcastSizes(tensor_sizes);
for (Use u : size_calc_uses) {
u.user->output()->replaceAllUsesWith(output_size);
u.user->destroy();
}
}
producer_for_chunk_node->destroy();
return true;
}
// returns where to continue scanning, and whether any fusion was made
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (fuser::cuda::isFusibleCudaFusionGroup(consumer)) {
// handle inputs in reverse topological order as well...
// otherwise in f(a,a+b) it will appear a is used twice if we consider
// the f-a fusion before the f-(a+b) fusion first.
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (tryToMoveChunk(consumer, producer)) {
// the chunk before this consumer was re-arranged to allow fusion,
// we scan this consumer again to perform the fusion
return std::make_pair(consumer->reverseIterator(), true);
}
auto fusion_group = tryFuse(consumer, producer);
if (fusion_group) {
// after fusion, consumer moves into a FusionGroup, so inputs is no
// longer valid so we rescan the new FusionGroup for more fusions...
return std::make_pair(fusion_group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
void replaceIntermediateBroadcastingChunks() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
auto* node = *it;
++it; // We might delete node, so increment the iterator now.
if (node->kind() != prim::BroadcastingChunk) {
continue;
}
auto* bchunk = node;
insertExplicitBroadcast(bchunk);
auto* graph = block_->owningGraph();
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
input_offset++) {
auto* input = bchunk->inputs().at(input_offset);
Node* new_chunk =
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
new_chunk->copyAttributes(*bchunk);
for (const auto output_offset : c10::irange(nchunks)) {
auto new_output = new_chunk->addOutput();
auto old_output =
bchunk->outputs().at(input_offset * nchunks + output_offset);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
}
bchunk->destroy();
}
}
bool usedInDtype(Value* v) {
const auto& uses = v->uses();
return std::any_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("prim::dtype(Tensor a) -> int");
});
}
bool usedOnlyInDtypeAndSize(Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("prim::dtype(Tensor a) -> int") ||
u.user->matches("aten::size(Tensor self) -> int[]");
});
}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (const auto i : c10::irange(inputs.size())) {
if (inputs[i]->type()->isSubtypeOf(*TensorType::get())) {
shape_of[sinputs[i]] = graph->insert(aten::size, {inputs[i]});
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
if (usedOnlyInDtypeAndSize(outputs[i]))
continue;
if (soutputs[i]->type()->isSubtypeOf(TensorType::get())) {
shape_of[soutputs[i]] = graph->insert(aten::size, {outputs[i]});
}
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == prim::FusedConcat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input()) > 0,
"buildShapeExpressions failed at accessing input shapes");
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
// extended shape expression support to reduction operations
// TODO: `aten::sum` is too flexible, we should restrict for a better
// match
if (n->kind() == aten::sum) {
// TODO: expand support to wire non-constant inputs, this is currently
// blocked by profiling executor not capable of profiling scalar inputs.
TORCH_INTERNAL_ASSERT(
n->input(1)->node()->kind() == prim::Constant &&
n->input(2)->node()->kind() == prim::Constant,
"only supports reduction axes and keepdim being constant");
// hmmm, do I need to setInsertPoint...
const auto map_inputs = [&](Value* v) -> Value* {
// if constant ever has an input, it has to come from
// profile_ivalue dependency
if (v->node()->kind() == prim::Param &&
fusion_group->input(v->offset())->node()->kind() ==
prim::profile_ivalue) {
// we need to map it along profile_ivalue dependency
return fusion_group->input(v->offset());
} else {
throw std::runtime_error(
std::string("unexpected input from node") +
v->node()->kind().toDisplayString());
}
};
Node* in1_const = graph->createClone(n->input(1)->node(), map_inputs);
graph->insertNode(in1_const);
Node* in2_const = graph->createClone(n->input(2)->node(), map_inputs);
graph->insertNode(in2_const);
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input(0)) > 0,
"buildShapeExpressions failed at accessing input shapes");
std::vector<Value*> inputs = {
shape_of.at(n->input(0)), in1_const->output(), in2_const->output()};
Node* size_node =
graph->insertNode(graph->create(prim::ReductionSizes, inputs, 1));
Value* size = size_node->output(0);
size->setType(ListType::ofInts());
shape_of.emplace(n->output(), size);
continue;
}
// TODO: output(1) & output(2) should also be marked
if (n->kind() == aten::native_layer_norm) {
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input(0)) > 0,
"buildShapeExpressions failed at accessing input shapes");
shape_of.emplace(n->output(0), shape_of.at(n->input(0)));
continue;
}
// TODO: output(1) & output(2) should also be marked
if (n->kind() == aten::native_layer_norm_backward) {
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input(0)) > 0,
"buildShapeExpressions failed at accessing input shapes");
shape_of.emplace(n->output(0), shape_of.at(n->input(0)));
if (shape_of.count(n->input(5)) > 0) {
shape_of.emplace(n->output(1), shape_of.at(n->input(5)));
}
if (shape_of.count(n->input(6)) > 0) {
shape_of.emplace(n->output(2), shape_of.at(n->input(6)));
}
continue;
}
// TODO: output(1) & output(2) should also be marked
if (n->kind() == aten::native_batch_norm) {
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input(0)) > 0,
"buildShapeExpressions failed at accessing input shapes");
shape_of.emplace(n->output(0), shape_of.at(n->input(0)));
continue;
}
// TODO: output(1) & output(2) should also be marked
if (n->kind() == aten::native_batch_norm_backward) {
TORCH_INTERNAL_ASSERT(
shape_of.count(n->input(0)) > 0,
"buildShapeExpressions failed at accessing input shapes");
shape_of.emplace(n->output(0), shape_of.at(n->input(0)));
if (shape_of.count(n->input(2)) > 0) {
shape_of.emplace(n->output(1), shape_of.at(n->input(2)));
// use shape of weight here for grad_bias
shape_of.emplace(n->output(2), shape_of.at(n->input(2)));
}
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
auto shapes = fmap(tensor_inputs, [&](Value* v) {
TORCH_INTERNAL_ASSERT(
shape_of.count(v) > 0,
"buildShapeExpressions failed at accessing input shapes");
return shape_of.at(v);
});
AT_ASSERT(!shapes.empty());
shape_of.emplace(
n->output(0),
shapes.size() == 1 ? shapes[0] : broadcastSizes(shapes));
}
return shape_of;
}
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
if (fusion_group->kind() != prim::CudaFusionGroup)
return;
auto subgraph = fusion_group->g(attr::Subgraph);
// TODO: failure in buildShapeExpressions should not break fusion execution,
// we can add a try/catch here to bailout from removeOutputsUsedOnlyInSize.
GRAPH_DEBUG("before build shape expression: ", *graph_);
auto shape_of = buildShapeExpressions(fusion_group);
GRAPH_DEBUG("after build shape expression: ", *graph_);
auto outputs = fusion_group->outputs().vec();
auto soutputs = subgraph->outputs().vec();
// XXX: Iterating in this order is not only good for performance reasons!
// It is also crucial for correctness (i has to reflect the current true
// index of outputs[i])!
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
auto output = outputs[i];
auto soutput = soutputs[i];
if (usedOnlyInDtypeAndSize(output) && shape_of.count(soutput) > 0) {
bool has_dtype = usedInDtype(output);
auto uses = output->uses();
for (Use u : uses) {
if (u.user->matches("aten::size(Tensor self) -> int[]")) {
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
u.user->destroy();
} else if (u.user->matches("prim::dtype(Tensor a) -> int")) {
continue;
} else {
AT_ASSERT(
false,
"unrecognized consumer should not trigger removeOutputsUsedOnlyInSize");
}
}
// We only wipe the output when there's no more dtype consumer.
// This is to be removed by `removeOutputUsedOnlyInDtype`
if (!has_dtype) {
fusion_group->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
GRAPH_DEBUG("after build shape expression and re-wiring: ", *graph_);
}
void refreshAliasDb() {
aliasDb_ = torch::make_unique<AliasDb>(graph_);
}
void optimizeFusedGraphs() {
for (Node* node : block_->nodes()) {
if (node->kind() != kind_) {
continue;
}
auto subgraph = node->g(attr::Subgraph);
EliminateDeadCode(subgraph);
EliminateCommonSubexpression(subgraph);
ConstantPooling(subgraph);
}
}
void run() {
// Run the pass until no changes are made.
// This is necessary, because the algorithm can miss out on certain fusion
// opportunities if ran only once. Consider this graph:
//
// %1 = f(...)
// %2 = g(%1)
// %3 = h(%1)
// %4 = l(%3)
// return (%4, %2)
//
// where f, g, h, l are simple map ops.
// The first iteration will fuse %4 and %3, and see that %1 is an input, but
// can't be fused, because it has a different use before the fusion group
// in our topological ordering. Then, %2 will be considered, and fused with
// %1. If we do another iteration, the algorithm will consider the fusion of
// these two groups and fix the situation.
bool any_changed = true;
while (any_changed) {
any_changed = false;
refreshAliasDb();
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
bool changed = false;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
GRAPH_DEBUG("after scan and merge", *graph_);
refreshAliasDb();
// fuseConcats();
optimizeFusedGraphs();
// The graph fuser can add intermediate prim::BroadcastingChunk nodes.
// Replace them with broadcasts + chunks.
replaceIntermediateBroadcastingChunks();
// Fuse starting chunks into the group.
// for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
// it = scanNodeForChunks(*it);
//}
GRAPH_DEBUG("before removeOutputsUsedOnlyInSize", *graph_);
// Remove outputs that have been added only because we need their size
for (Node* n : block_->nodes()) {
removeOutputsUsedOnlyInSize(n);
}
GRAPH_DEBUG("after removeOutputsUsedOnlyInSize", *graph_);
for (Node* node : block_->nodes()) {
for (Block* sub_block : node->blocks()) {
CudaGraphFuser(sub_block, graph_).run();
}
}
}
};
void removeCudaFusionPathForGuardNode(Node* n) {
auto uses = n->output()->uses();
TORCH_INTERNAL_ASSERT(
uses.size() == 1,
"CudaFusionGuard should only be used by a single prim::If");
Node* if_node = uses[0].user;
TORCH_INTERNAL_ASSERT(
if_node->kind() == prim::If,
"CudaFusionGuard should only be used by prim::If");
auto fall_back_graph = if_node->blocks()[1];
Node* fallback_node = nullptr;
for (auto fb_n : fall_back_graph->nodes()) {
TORCH_INTERNAL_ASSERT(
fb_n->kind() == prim::FallbackGraph,
"CudaFusionGuard fallback path should only have single fallback node");
TORCH_INTERNAL_ASSERT(
fallback_node == nullptr,
"CudaFusionGuard fallback path should only have single fallback node");
fallback_node = fb_n;
}
TORCH_INTERNAL_ASSERT(
fallback_node != nullptr,
"CudaFusionGuard fallback path found no fallback node");
fallback_node->moveBefore(n);
TORCH_INTERNAL_ASSERT(
fallback_node->outputs().size() == if_node->outputs().size(),
"CudaFusionGuard fallback should have same number of outputs as with nesting if block");
if_node->replaceAllUsesWith(fallback_node);
if_node->destroy();
n->destroy();
}
bool missingCompleteTypes(const std::vector<TypePtr>& types) {
for (const auto& type : types) {
if (auto tensor_type = type->cast<TensorType>()) {
// if we found one missing value, we know that we are not going to able to
// generate a kernel, so we bail out;
if (!tensor_type->device().has_value() ||
!tensor_type->dim().has_value() ||
!tensor_type->scalarType().has_value()) {
return true;
}
}
}
return false;
}
void removeFusionWithMissingProfilingInformation(Block* block) {
FUSER_PERF_SCOPE("compileFusionRecursive");
std::vector<Node*> removeCudaFusionNodes;
for (auto node : block->nodes()) {
if (node->kind() == prim::CudaFusionGuard &&
missingCompleteTypes(node->tys(attr::types))) {
removeCudaFusionNodes.push_back(node);
}
for (auto sub_block : node->blocks()) {
removeFusionWithMissingProfilingInformation(sub_block);
}
}
for (auto node : removeCudaFusionNodes) {
removeCudaFusionPathForGuardNode(node);
}
}
void compileFusionRecursive(Block* block) {
FUSER_PERF_SCOPE("compileFusionRecursive");
for (auto node : block->nodes()) {
if (node->kind() == prim::CudaFusionGroup) {
fuser::cuda::compileFusionGroup(node);
}
for (auto sub_block : node->blocks()) {
compileFusionRecursive(sub_block);
}
}
}
void PeepholeOptimizeShapeExpressions(Block* block) {
FUSER_PERF_SCOPE("PeepholeOptimizeShapeExpressions");
auto nodes = block->nodes();
for (auto it = nodes.begin(); it != nodes.end(); ++it) {
Node* node = *it;
for (Block* subblock : node->blocks()) {
PeepholeOptimizeShapeExpressions(subblock);
}
if (node->kind() == prim::BroadcastSizes) {
// Remove no-op broadcasts.
if (node->inputs().size() == 1) {
node->output()->replaceAllUsesWith(node->input());
it.destroyCurrent();
continue;
}
// Deduplicate inputs, but use their unique() values to ensure
// this process only depends on the graph.
std::map<size_t, Value*> unique_to_value;
for (Value* input : node->inputs()) {
unique_to_value.emplace(input->unique(), input);
}
if (unique_to_value.size() != node->inputs().size()) {
std::vector<Value*> inputs;
inputs.reserve(unique_to_value.size());
for (auto& entry : unique_to_value) {
inputs.push_back(entry.second);
}
if (inputs.size() == 1) {
node->output()->replaceAllUsesWith(inputs[0]);
} else {
WithInsertPoint insert_guard{node};
node->output()->replaceAllUsesWith(broadcastSizes(inputs));
}
it.destroyCurrent();
--it; // Revisit the node with deduplicated inputs
continue;
}
// Remove compose simple chains of broadcasts into a single node.
const auto& uses = node->output()->uses();
if (uses.size() == 1 && uses[0].user->kind() == prim::BroadcastSizes) {
Node* user = uses[0].user;
user->removeInput(uses[0].offset);
// NB: we don't care about deduplication in here, as we will visit user
// later.
for (Value* i : node->inputs()) {
user->addInput(i);
}
it.destroyCurrent();
}
}
}
}
//! [ Note -- CudaFusionGuard implementation ]
//!
//! shamelessly copying code from NNC (tensorexpr_fuser) with very little
//! modification, original code at:
//! `../../passes/tensorexpr_fuser.cpp:guardFusionGroup`
//!
//! Add prim::CudaFusionGuard node to ensure that accepted profiling information
//! is not violated at runtime.
//!
//! We replace a single
//!
//! outputs = prim::CudaFusionGroup[cache_id](inputs)
//!
//! with the following pattern:
//!
//! %1 : bool = prim::CudaFusionGuard[types=[...]](inputs)
//! outputs = prim::If(%1)
//! block0():
//! outputs = prim::CudaFusionGroup[cache_id](inputs)
//! -> (outputs)
//! block1():
//! %2 : Function = prim::Constant[name="fallback_function", fallback=1]()
//! otuputs = prim::CallFunction(%2, inputs)
//! -> (outputs)
//!
//! `prim::CudaFusionGuard` stores all profiled data type in attribute
//! `attr::types`.
//! At runtime, we check input tensors against our profiled data type and return
//! an output holds the result of the check (bool).
//! See [ Note -- type guard logic in CudaFusionGuard ]
//!
//! This ensures that `prim::CudaFusionGroup` only execute compatible inputs.
//! In case of check failure, execution goes through false block, which
//! recursively goes along another profiling / optimization iteration. (could be
//! tuned by `bailout_depth`)
//!
//! TODO: we also need to assert/check reduction axes and replace it with
//! constants in `CudaFusionGroup`
void guardFusionGroup(Node* fusion) {
// Fixup types of the subgraph inputs
std::vector<TypePtr> guard_types;
std::vector<Value*> tensor_inputs_to_check;
std::set<size_t> profiled_ivalue_indices;
for (size_t index = 0; index < fusion->inputs().size(); index++) {
Value* input = fusion->inputs()[index];
if (input->type()->cast<TensorType>()) {
// We only check inputs of the fusion group and expect NNC to infer
// intermediates and outputs shapes
// note: modified from original implementation, we are guarding fusion
// outputs
if (input->node()->kind() == prim::Constant) {
continue;
}
tensor_inputs_to_check.push_back(input);
guard_types.push_back(input->type());
} else if (input->node()->kind() == prim::profile_ivalue) {
// Conditional constant from profiled_ivalue, should be guarded
profiled_ivalue_indices.insert(index);
}
}
// we should assert on non-tensor inputs
TORCH_INTERNAL_ASSERT(
tensor_inputs_to_check.size(),
"CudaFusionGuard expects at least one tensor input");
// insert the if block first;
auto versioning_if =
fusion->owningGraph()->create(prim::If, fusion->outputs().size());
for (size_t idx = 0; idx < fusion->outputs().size(); ++idx) {
versioning_if->output(idx)->setType(fusion->output(idx)->type());
fusion->output(idx)->replaceAllUsesWith(versioning_if->output(idx));
}
auto true_block = versioning_if->addBlock();
auto false_block = versioning_if->addBlock();
// insert typecheck_node;
Node* typecheck_node =
fusion->owningGraph()
->create(prim::CudaFusionGuard, tensor_inputs_to_check, 1)
->insertBefore(fusion);
// fix output to BoolType
typecheck_node->output()->setType(BoolType::get());
Value* typecheck_result = typecheck_node->output();
typecheck_node->tys_(attr::types, guard_types);
versioning_if->insertAfter(typecheck_node);
// Fill in the false block. It should contain the unoptimized
// copy of the fused subgraph, unless we have conditional constants from
// profiled_ivalue;
auto fusion_graph = fusion->g(attr::Subgraph);
std::shared_ptr<Graph> fb_graph; // resource holder;
// Restore the dependency for constant introduced by profiled_ivalue within
// the graph.
if (!profiled_ivalue_indices.empty()) {
// This is necessary as it cleans up the fallback graph, which was copied
// from subgraph, since the two graph would differ as we cannot use
// conditional constant in fallback
// 1. RESTORE conditional constant dependency in fallback group;
fb_graph = fusion_graph->copy();
GRAPH_DEBUG("re-wiring fallback graph", *fb_graph);
for (const auto& offset : profiled_ivalue_indices) {
auto val = fb_graph->inputs()[offset];
auto uses = val->uses();
// since we are updating use of val in the loop, we have to copy
// val->uses() before hand.
for (const auto& use : uses) {
// re-wire inputs and remove conditional constant nodes;
TORCH_INTERNAL_ASSERT(
use.user->kind() == prim::Constant,
"profile_ivalue at index: ",
offset,
" can only be used by conditional constant, instead got: ",
use.user->kind().toDisplayString());
use.user->output()->replaceAllUsesWith(val);
use.user->destroy();
}
}
WithInsertPoint guard(false_block->return_node());
const auto subgraph_outputs =
insertGraph(*fusion->owningGraph(), *fb_graph, fusion->inputs());
for (Value* output : subgraph_outputs) {
false_block->registerOutput(output);
}
// types get copied to the fallback graph, so remove specializations before
// replacing
// TODO: this is not exposed here, I need to remove that before inserting
// the graph
// removeTensorTypeSpecializations(false_block);
replaceBlockWithFallbackGraph(false_block, fusion->inputs());
// 2. REMOVE conditional constant dependency in fusion group
size_t compensation = 0;
// get a constant false, which is used by `and` pattern later
auto const_true = fusion->owningGraph()->insertConstant(IValue(true));
const_true->node()->moveBefore(versioning_if);
for (const auto& original_offset : profiled_ivalue_indices) {
size_t offset = original_offset - compensation;
// step a. handle fusion
// remove inputs to fusion, and update check logic for fallback
auto profiled_ival = fusion->input(offset)->node()->input();
auto const_o = createConditionalConstant(fusion->input(offset)->node());
TORCH_INTERNAL_ASSERT(
const_o,
"profile_ivalue node are expected to have profile information, at node: ",
*fusion->input(offset)->node());
const_o->node()->moveBefore(versioning_if);
Value* ivalue_check = nullptr;
if (fusion->input(offset)->node()->hasAttribute(
Symbol::attr("profiled_bool"))) {
// aten::eq doesn't support comparison between two boolean
auto xor_n = fusion->owningGraph()
->create(aten::__xor__, {profiled_ival, const_o}, 1)
->insertBefore(versioning_if);
xor_n->output()->setType(BoolType::get());
ivalue_check =
fusion->owningGraph()
->create(aten::__xor__, {xor_n->output(), const_true}, 1)
->insertBefore(versioning_if)
->output();
} else if (fusion->input(offset)->node()->hasAttribute(
Symbol::attr("profiled_size"))) {
// TODO(profile_size): check sizes here with special size comparison op
// TORCH_INTERNAL_ASSERT(false, "not implemented yet");
ivalue_check =
fusion->owningGraph()
->create(
c10::Symbol::fromQualString("prim::CudaFusionSizeEq"),
{profiled_ival, const_o},
1)
->insertBefore(versioning_if)
->output();
} else {
ivalue_check = fusion->owningGraph()
->create(aten::eq, {profiled_ival, const_o}, 1)
->insertBefore(versioning_if)
->output();
}
ivalue_check->setType(BoolType::get());
typecheck_result =
fusion->owningGraph()
->create(aten::__and__, {ivalue_check, typecheck_result}, 1)
->insertBefore(versioning_if)
->output();
typecheck_result->setType(BoolType::get());
// remove inputs to fusion;
fusion->removeInput(offset);
// step b. remove the extra dependency inside fusion;
for (const auto& use : fusion_graph->inputs()[offset]->uses()) {
TORCH_INTERNAL_ASSERT(
use.user->kind() == prim::Constant,
"profile_ivalue at index: ",
offset,
" can only be used by conditional constant, instead got: ",
use.user->kind().toDisplayString());
use.user->removeAllInputs();
}
fusion_graph->eraseInput(offset);
compensation++;
}
// update graph in fusion node
fusion->g_(attr::Subgraph, fusion_graph);
} else {
WithInsertPoint guard(false_block->return_node());
const auto subgraph_outputs =
insertGraph(*fusion->owningGraph(), *fusion_graph, fusion->inputs());
for (Value* output : subgraph_outputs) {
false_block->registerOutput(output);
}
// types get copied to the fallback graph, so remove specializations before
// replacing
// TODO: this is not exposed here, I need to remove that before inserting
// the graph
// removeTensorTypeSpecializations(false_block);
replaceBlockWithFallbackGraph(false_block, fusion->inputs());
}
// wiring up if block
versioning_if->addInput(typecheck_result);
// Fill in the true block. It has all inputs type-checked and its
// body should be the fusion group node.
fusion->moveBefore(true_block->return_node());
for (Value* output : fusion->outputs()) {
true_block->registerOutput(output);
}
}
void guardFusionGroups(Block* block) {
std::vector<Node*> fusions;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
guardFusionGroups(b);
}
if (n->kind() == prim::CudaFusionGroup) {
fusions.push_back(n);
}
}
for (Node* fusion : fusions) {
// step 1: a. add prim::CudaFusionGuard and fallback logic
// b. insert guard logic of profile_ivalue with if block
// c. restore conditional constant to non-constant for fallback
guardFusionGroup(fusion);
}
}
// rewire const integer index & empty byte-typed reserve space tensor outputs,
// so `CudaFusionGroup` doesn't have to handle those
void alterBatchNormImplIndex(Node* node) {
std::set<size_t> bn_index_out_indices;
std::set<size_t> bn_buffer_out_indices;
auto subgraph = node->g(attr::Subgraph);
for (size_t i = 0; i < subgraph->outputs().size(); i++) {
auto val = subgraph->outputs()[i];
if (val->node()->kind() == aten::_batch_norm_impl_index &&
val->offset() == 4) {
bn_index_out_indices.emplace(i);
} else if (
val->node()->kind() == aten::_batch_norm_impl_index &&
val->offset() == 3) {
bn_buffer_out_indices.emplace(i);
}
}
if (!bn_index_out_indices.empty()) {
// we output index to 0 so backwards go through native_batch_norm, which is
// what we support;
auto const_1 = node->owningGraph()->insertConstant(IValue(0));
const_1->node()->moveBefore(node);
for (auto i : bn_index_out_indices) {
node->outputs()[i]->replaceAllUsesWith(const_1);
}
}
if (!bn_buffer_out_indices.empty()) {
auto graph = node->owningGraph();
std::vector<int64_t> sizes{0}; // empty tensor with no size;
// std::vector<int64_t> sizes; // empty tensor with no size;
auto const_size_0 = node->owningGraph()->insertConstant(IValue(sizes));
const_size_0->node()->moveBefore(node);
auto const_0 = node->owningGraph()->insertConstant(IValue(0));
const_0->node()->moveBefore(node);
auto none_val = node->owningGraph()->insertConstant(IValue());
none_val->node()->moveBefore(node);
auto device =
graph->insertNode(graph->create(prim::device, {node->inputs()[0]}, 1));
device->moveBefore(node);
device->output()->setType(DeviceObjType::get());
auto empty_tensor = graph->insertNode(graph->create(
aten::empty,
{const_size_0, const_0, none_val, device->output(), none_val, none_val},
1));
empty_tensor->moveBefore(node);
for (auto i : bn_buffer_out_indices) {
node->outputs()[i]->replaceAllUsesWith(empty_tensor->output());
}
}
bn_index_out_indices.insert(
bn_buffer_out_indices.begin(), bn_buffer_out_indices.end());
for (auto iter = bn_index_out_indices.crbegin();
iter != bn_index_out_indices.crend();
++iter) {
subgraph->eraseOutput(*iter);
node->eraseOutput(*iter);
}
}
// rewire empty byte-typed reserve space tensor input to an empty float-typed
// tensor, because `CudaFusionGroup` doesn't support byte-typed tensor, nor does
// it use reserve space.
void alterBatchNormImplIndexBackward(Node* node) {
std::set<size_t> bn_buffer_in_indices;
auto subgraph = node->g(attr::Subgraph);
for (auto n : subgraph->nodes()) {
if (n->kind() == aten::_batch_norm_impl_index_backward) {
// 11th inputs are `reserve`, which is not used by codegen kernel and its
// type is not supported `Byte`. So we disconnect it here to avoid codegen
// error
auto byte_input = n->inputs()[11];
// TODO: let's check the data type for buffer and skip if it's good
// TODO: we can actually support it by adding an extra inputs to the
// subgraph
// TODO: assert on empty buffer
TORCH_INTERNAL_ASSERT(
byte_input->node() == subgraph->param_node(),
"Assumption that reserve input to aten::_batch_norm_impl_index_backward comes from forward graph is broken");
bn_buffer_in_indices.emplace(byte_input->offset());
}
}
if (!bn_buffer_in_indices.empty()) {
auto graph = node->owningGraph();
std::vector<int64_t> sizes{0}; // empty tensor with no size;
// std::vector<int64_t> sizes{}; // empty tensor with no size;
auto const_size_0 = node->owningGraph()->insertConstant(IValue(sizes));
const_size_0->node()->moveBefore(node);
auto const_0 = node->owningGraph()->insertConstant(IValue(6));
const_0->node()->moveBefore(node);
auto none_val = node->owningGraph()->insertConstant(IValue());
none_val->node()->moveBefore(node);
auto device =
graph->insertNode(graph->create(prim::device, {node->inputs()[1]}, 1));
device->moveBefore(node);
device->output()->setType(DeviceObjType::get());
auto empty_tensor = graph->insertNode(graph->create(
aten::empty,
{const_size_0, const_0, none_val, device->output(), none_val, none_val},
1));
empty_tensor->moveBefore(node);
for (const auto& item : bn_buffer_in_indices) {
subgraph->inputs()[item]->setType(
node->inputs()[item]->type()->cast<TensorType>()->withScalarType(
at::ScalarType::Float));
node->replaceInput(item, empty_tensor->output());
}
}
}
void alterBatchNormImpls(Block* block) {
std::vector<Node*> fusions;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
alterBatchNormImpls(b);
}
if (n->kind() == prim::CudaFusionGroup) {
fusions.push_back(n);
}
}
for (Node* fusion : fusions) {
// remove index & reserve from outputs;
alterBatchNormImplIndex(fusion);
// remove reserve from inputs;
alterBatchNormImplIndexBackward(fusion);
}
}
// We absorb `prim::dtype` node into CudaFusion structure. The structure below
//
// %1 = prim::CudaFusionGuard(...)
// %2, %3 = prim::If(...)
// block0():
// %4, %5 = prim::CudaFusionGroup(...)
// -> (%4, %5)
// block1():
// %6, %7 = prim::FallbackGraph(...)
// -> (%6, %7)
// %4 = prim::dtype(%3)
// ... (uses %2, %4, but never reference to %3 any more)
//
// is updated to:
//
// %1 = prim::CudaFusionGuard(...)
// %2, %3 = prim::If(...)
// block0():
// %4 = prim::CudaFusionGroup(...) # %5 is also removed from subgraph
// %8 = prim::Constant[value=...]()
// -> (%4, %8)
// block1():
// %6, %7 = prim::FallbackGraph(...)
// %9 = prim::dtype(%7)
// -> (%6, %9)
// # %4 = prim::dtype(%3) is removed. All reference to %4 is replaced with %3
// ... (uses %2, %4, but never reference to %3 any more)
void removeOutputUsedOnlyInDtype(Node* fusion_node) {
auto fusion_block = fusion_node->owningBlock();
TORCH_INTERNAL_ASSERT(
fusion_block->owningNode() &&
fusion_block->owningNode()->kind() == prim::If,
"CudaFusionGroup should be inside `prim::CudaFusionGuard` / `prim::If`");
auto if_node = fusion_block->owningNode();
auto fusion_node_graph = fusion_node->g(attr::Subgraph);
auto fallback_block = if_node->blocks()[1];
bool updated = false;
// Iterating in this order is crucial for correctness (i has to reflect the
// current true index of outputs[i])!
for (int64_t i = static_cast<int64_t>(if_node->outputs().size()) - 1; i >= 0;
--i) {
auto output = if_node->outputs()[i];
// output only used in dtype, we eliminate the output and rely on
// profiled/static scalar type inference to save on memory IO.
if (usedOnlyInDtype(output)) {
updated = true;
{
// update fusion_block to output profiled scalar type
auto fusion_output = fusion_block->outputs()[i];
auto tensor_type = fusion_output->type()->cast<TensorType>();
TORCH_INTERNAL_ASSERT(
tensor_type, "non tensor fed to dtype is not supported");
auto scalar_type = tensor_type->scalarType();
TORCH_INTERNAL_ASSERT(
scalar_type.has_value(),
"ScalarType should be static for Tensors in fusion for amp optimization");
auto type_const =
fusion_block->owningGraph()->insertConstant(IValue(scalar_type));
type_const->setType(IntType::get());
type_const->node()->moveBefore(fusion_block->return_node());
fusion_block->replaceOutput(i, type_const);
// remove the dangling output tensor in CudaFusionGroup
fusion_node->eraseOutput(i);
fusion_node_graph->eraseOutput(i);
}
{
// update fallback_block to output dtype instead of tensor
auto tensor_output = fallback_block->outputs()[i];
auto dtype_node = fallback_block->owningGraph()->create(
prim::dtype, tensor_output, 1);
dtype_node->output()->setType(IntType::get());
fallback_block->appendNode(dtype_node);
fallback_block->replaceOutput(i, dtype_node->output());
}
// we just shot-cut the `dtype` node since we are already outputing dtype
auto uses = output->uses();
for (Use u : uses) {
AT_ASSERT(u.user->matches("prim::dtype(Tensor a) -> int"));
u.user->output()->replaceAllUsesWith(output);
u.user->destroy();
}
output->setType(IntType::get());
}
}
if (updated) {
fusion_node->g_(attr::Subgraph, fusion_node_graph);
}
}
// For output tensors in fusion group that is only used by dtype node, with
// CudaFusionGuard, we can short-cut it with constant dtype directly instead to
// save IO memory bandwidth.
// The reason that we do it after we insert the guard, instead of doing it along
// during graph fusion/partitioning, is that we needed to handle the fallback
// differently, since fallback is not inside CudaFusionGuard, and hence doesn't
// have the dtype as a constant.
void removeOutputUsedOnlyInDtype(Block* block) {
std::vector<Node*> fusions;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
removeOutputUsedOnlyInDtype(b);
}
if (n->kind() == prim::CudaFusionGroup) {
fusions.push_back(n);
}
}
for (Node* fusion : fusions) {
// remove index & reserve from outputs;
removeOutputUsedOnlyInDtype(fusion);
}
}
void RemoveProfileIValue(Node* profile_ivalue) {
for (const auto& use : profile_ivalue->output()->uses()) {
if (use.user->kind() == prim::Constant) {
use.user->output()->replaceAllUsesWith(profile_ivalue->input());
use.user->destroy();
}
}
profile_ivalue->output()->replaceAllUsesWith(profile_ivalue->input());
profile_ivalue->destroy();
}
void ExtractProfileIValue(Node* profile_ivalue) {
auto const_o = createConditionalConstant(profile_ivalue);
if (const_o) {
auto const_n = const_o->node();
const_n->moveAfter(profile_ivalue);
profile_ivalue->output()->replaceAllUsesAfterNodeWith(const_n, const_o);
// special wiring, we add this input to constant simply in order to create
// dependency, which we can trace and remove later;
const_n->addInput(profile_ivalue->output());
} else {
// no profile value available, remove profile_ivalue node;
RemoveProfileIValue(profile_ivalue);
}
}
void traverseProfileIValues(
Block* block,
const std::function<void(Node*)>& func) {
std::vector<Node*> profile_ivalues;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
traverseProfileIValues(b, func);
}
if (n->kind() == prim::profile_ivalue) {
profile_ivalues.push_back(n);
}
}
for (Node* profile_ivalue : profile_ivalues) {
func(profile_ivalue);
}
}
// break `linear` layer into `matmul` and `add_optional`. This allows us to fuse
// the binary operation without supporting gemm.
// Note that we are not breaking `linear` layer without bias.
void decomposeLinearOps(Block* block) {
std::vector<Node*> linear_nodes;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
decomposeLinearOps(b);
}
// only decompose `linear` layer with bias.
if (n->kind() == aten::linear &&
!n->input(2)->type()->isSubtypeOf(
static_cast<c10::TypePtr>(NoneType::get()))) {
linear_nodes.push_back(n);
}
}
auto graph = block->owningGraph();
for (Node* n : linear_nodes) {
WithInsertPoint guard(n);
auto weight_t = graph->insertNode(graph->create(aten::t, {n->input(1)}, 1));
auto matmul = graph->insertNode(
graph->create(aten::matmul, {n->input(0), weight_t->output()}, 1));
auto input_tensor_type = n->input(0)->type()->cast<c10::TensorType>();
auto mat0_size = input_tensor_type->sizes().concrete_sizes();
auto mat1_size =
n->input(1)->type()->cast<c10::TensorType>()->sizes().concrete_sizes();
// TODO: The assert is not necessary when we can handle matmul, right now we
// are splitting the linear between matmul & bias_add. Our fuser can only
// take the second half and we would need the size information.
TORCH_INTERNAL_ASSERT(
mat0_size.has_value() && mat1_size.has_value(),
"concrete shape for linear input & weight are required");
auto out_size = mat0_size.value();
out_size[out_size.size() - 1] = mat1_size.value()[0];
matmul->output()->setType(input_tensor_type->withSizes(out_size));
// TODO: memory stride should be considered here, our inference above is not
// safe.
auto bias = graph->insertNode(
graph->create(prim::add_optional, {matmul->output(0), n->input(2)}, 1));
bias->output()->setType(matmul->output(0)->type());
n->output()->replaceAllUsesWith(bias->output());
n->destroy();
}
}
} // anonymous namespace
void CudaFuseGraph(std::shared_ptr<Graph>& graph) {
FUSER_PERF_SCOPE("nvFuser::Manager::CudaFuseGraph");
GRAPH_DUMP("Before Fusion: ", graph);
// TODO: extract & guard profile_ivalue; but how do we restore it???
// I don't know how to store edge/node in attribute. so let's abuse data flow
// dependency and add inputs to conditional constant generated by
// aten::profile_ivalue
traverseProfileIValues(graph->block(), ExtractProfileIValue);
GRAPH_DEBUG("insert conditional constant from profile_ivalue: ", *graph);
// TODO: we need to properly restore shape information after fusion.
// shamelessly use tool from NNC.
RemoveProfileNodesAndSpecializeTypes(graph);
GRAPH_DEBUG("After Profiling Nodes Removed: ", *graph);
// TODO: separate passes into different file;
// TODO: restore decomposition after fusion, in case we are decomposing
// operation that can't be fused;
decomposeLinearOps(graph->block());
GRAPH_DEBUG("decompose operations by nvfuser: ", *graph);
CudaGraphFuser(graph->block(), graph).run();
GRAPH_DEBUG("After Fusion: ", *graph);
// guard input types as well as conditional constants from
// aten::profile_ivalue
guardFusionGroups(graph->block());
GRAPH_DEBUG("After Guard Fusion: ", *graph);
// mutate `aten::_batch_norm_impl_index` and
// `aten::_batch_norm_impl_index_backward` node in the fusion group to WAR
// the lack of fusion support on integer output as well as byte-typed tensor.
alterBatchNormImpls(graph->block());
GRAPH_DEBUG("After _batch_norm_impl_index: ", *graph);
traverseProfileIValues(graph->block(), RemoveProfileIValue);
GRAPH_DEBUG("Before remove missing profiling: ", *graph);
removeFusionWithMissingProfilingInformation(graph->block());
GRAPH_DEBUG("After remove missing profiling: ", *graph);
// optimization targeting AMP
removeOutputUsedOnlyInDtype(graph->block());
GRAPH_DEBUG("After removeOutputUsedOnlyInDtype: ", *graph);
// After FuseGraph some common subexpressions may come back
EliminateCommonSubexpression(graph);
// We might have emitted a fair amount of useless shape propagating code, so
// remove it
EliminateDeadCode(graph);
// Improve the quality of shape propagation code that was left
PeepholeOptimizeShapeExpressions(graph->block());
// TODO: we need to properly restore shape information after fusion.
// shamelessly use tool from NNC.
RemoveTensorTypeSpecializations(graph);
GRAPH_DUMP("Before Compilation: ", graph);
// Compile CudaFusionGroup
compileFusionRecursive(graph->block());
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch