mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* Improve Variable interface * Address comments from @apaszke and @colesbury * string ::operator= is not noexcept * Remove ir.h from tracer_state.h to improve build times * Make Variable a struct and pack SavedVariable fields * Implement as_variable_ref * grad_fn_ptr() -> grad_fn_unsafe() * Reduce hackiness of set_type hack * Include variable.h and edge.h in tracer_state.h because it uses them * class Variable -> struct Variable because Windows cant even * Make Variable::output_nr uint32_t instead of int * Add comment about tracing state * Replaced more static_cast<Variable&> and improve docs * Remove SavedVariable destructor and construct members in init list * Clarify docs for Variable * Variable::set_version -> set_version_counter
358 lines
11 KiB
C++
358 lines
11 KiB
C++
#include "torch/csrc/autograd/python_variable_indexing.h"
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/THP_export.h"
|
|
#include "torch/csrc/autograd/function.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/utils/python_compat.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/tensor_new.h"
|
|
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch::autograd::utils;
|
|
|
|
extern bool THPModule_isTensor(PyObject *obj);
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
Py_ssize_t THPVariable_length(PyObject* self) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.dim() == 0) {
|
|
return 0;
|
|
}
|
|
return (Py_ssize_t)self_.size(0);
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
|
|
// We allow indexing by integers, slices, ellipsis, None, Variables,
|
|
// and tuples of those types. We also handle bools as if they were a
|
|
// Variable[ByteTensor].
|
|
|
|
static int64_t count_specified_dimensions(PyObject* index) {
|
|
// Count the number of indexed dimensions (everything but ellipsis and None)
|
|
int64_t count = 0;
|
|
auto size = PyTuple_GET_SIZE(index);
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPVariable_Check(obj)) {
|
|
auto& var = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
if (var.type().scalarType() == kByte) {
|
|
count += var.dim();
|
|
} else {
|
|
count++;
|
|
}
|
|
} else if (obj != Py_None && obj != Py_Ellipsis) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void invalid_index(PyObject* obj) {
|
|
throw IndexError(
|
|
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
|
|
"Variables are valid indices (got %s)", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
static Variable applySlice(const Variable& self, int64_t dim, PyObject* slice, bool ensure_view=false) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
auto length = self.size(dim);
|
|
if (!THPUtils_parseSlice(slice, length, &start, &stop, &step, &slicelength)) {
|
|
throw python_error();
|
|
}
|
|
if (step == 0) {
|
|
throw ValueError("step cannot be zero");
|
|
}
|
|
if (step < 0) {
|
|
// TODO: implement negative step
|
|
throw ValueError("negative step not yet supported");
|
|
}
|
|
if (!ensure_view && start == 0 && stop == length && step == 1) {
|
|
return self;
|
|
}
|
|
return self.slice(dim, start, stop, step);
|
|
}
|
|
|
|
static Variable applySelect(const Variable& self, int64_t dim, int64_t index) {
|
|
if (index == 0 && dim == 0 && self.dim() == 0) {
|
|
// Deprecated support for indexing 0-dim tensors as if they were 1-dim.
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. "
|
|
"Use tensor.item() to convert a 0-dim tensor to a Python number", 1);
|
|
return at::alias(self);
|
|
}
|
|
int64_t size = self.size(dim);
|
|
if (index < -size || index >= size) {
|
|
throw IndexError("index %lld is out of bounds for dimension %lld with size %lld",
|
|
index, dim, size);
|
|
}
|
|
if (index < 0) {
|
|
index += size;
|
|
}
|
|
return self.select(dim, index);
|
|
}
|
|
|
|
static Variable sequenceToVariable(const Type& type, PyObject* seq) {
|
|
auto& idx_type = type.toScalarType(kLong);
|
|
return torch::utils::new_from_data(idx_type, -1, seq);
|
|
}
|
|
|
|
static Variable valueToTensor(const Type & type, PyObject* value) {
|
|
if (THPVariable_Check(value)) {
|
|
return reinterpret_cast<THPVariable*>(value)->cdata;
|
|
}
|
|
if (THPUtils_checkLong(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackLong(value)));
|
|
}
|
|
if (PyFloat_Check(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackDouble(value)));
|
|
}
|
|
if (THPModule_isTensor(value)) {
|
|
return make_variable(createTensor(value), /*requires_grad=*/false);
|
|
}
|
|
throw TypeError("can't assign a %s to a %s", Py_TYPE(value)->tp_name, type.toString());
|
|
}
|
|
|
|
static Variable applySlicing(const Variable& self, PyObject* index, variable_list& outIndices) {
|
|
int64_t size = PyTuple_GET_SIZE(index);
|
|
int64_t dim = 0;
|
|
int64_t specified_dims = count_specified_dimensions(index);
|
|
|
|
auto handle_var = [&](const Variable& var) {
|
|
// TODO: check scalarType
|
|
outIndices.resize(dim + 1);
|
|
outIndices[dim] = var;
|
|
dim++;
|
|
};
|
|
|
|
if (specified_dims > self.dim()) {
|
|
throw IndexError("too many indices for tensor of dimension %d", (int)self.dim());
|
|
}
|
|
|
|
Variable result = self;
|
|
for (int64_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPUtils_checkLong(obj)) {
|
|
result = applySelect(result, dim, THPUtils_unpackLong(obj));
|
|
} else if (PySlice_Check(obj)) {
|
|
result = applySlice(result, dim, obj);
|
|
dim++;
|
|
} else if (obj == Py_Ellipsis) {
|
|
dim += self.dim() - specified_dims;
|
|
} else if (obj == Py_None) {
|
|
result = result.unsqueeze(dim);
|
|
dim++;
|
|
} else if (THPVariable_Check(obj)) {
|
|
handle_var(reinterpret_cast<THPVariable*>(obj)->cdata);
|
|
} else if (THPModule_isTensor(obj)) {
|
|
handle_var(make_variable(createTensor(obj), /*requires_grad=*/false));
|
|
} else if (PySequence_Check(obj)) {
|
|
handle_var(sequenceToVariable(self.type(), obj));
|
|
} else {
|
|
auto index = THPObjectPtr(PyNumber_Index(obj));
|
|
if (!index) {
|
|
PyErr_Clear();
|
|
invalid_index(obj);
|
|
}
|
|
result = applySelect(result, dim, THPUtils_unpackLong(index));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<Tensor> asTensorList(const variable_list& v) {
|
|
return std::vector<Tensor>(v.begin(), v.end());
|
|
}
|
|
|
|
static Variable dispatch_index(const Variable& self, const variable_list& indices) {
|
|
AutoNoGIL no_gil;
|
|
AutoGPU auto_gpu(self);
|
|
return self.index(asTensorList(indices));
|
|
}
|
|
|
|
static Variable dispatch_index_put_(Variable& self, const variable_list& indices, const Variable& value) {
|
|
AutoNoGIL no_gil;
|
|
AutoGPU auto_gpu(self);
|
|
return self.index_put_(asTensorList(indices), value);
|
|
}
|
|
|
|
static bool treatSequenceAsTuple(PyObject* index) {
|
|
if (PyTuple_Check(index)) {
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(index)) {
|
|
return false;
|
|
}
|
|
// This uses a heuristics from NumPy for determining whether to treat
|
|
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
|
|
//
|
|
// "At this point, we're left with a non-tuple, non-array, sequence:
|
|
// typically, a list. We use some somewhat-arbitrary heuristics from here
|
|
// onwards to decided whether to treat that list as a single index, or a
|
|
// list of indices. Backwards compatibility only takes effect for short
|
|
// sequences - otherwise we treat it like any other scalar."
|
|
auto n = PySequence_Size(index);
|
|
if (n < 0) {
|
|
// Negative size indicates a Python error in the PySequence_Size call.
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (n >= 32) {
|
|
return false;
|
|
}
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
|
|
if (!obj.get()) {
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) || PySlice_Check(obj.get())) {
|
|
return true;
|
|
}
|
|
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static THPObjectPtr wrapTuple(PyObject* index) {
|
|
THPObjectPtr res;
|
|
if (treatSequenceAsTuple(index)) {
|
|
res = PySequence_Tuple(index);
|
|
} else {
|
|
res = PyTuple_Pack(1, index);
|
|
}
|
|
if (!res) throw python_error();
|
|
return res;
|
|
}
|
|
|
|
static bool isSingleBoolScalar(const variable_list& vars) {
|
|
return vars.size() == 1 && vars[0].type().scalarType() == ScalarType::Byte && vars[0].dim() == 0;
|
|
}
|
|
|
|
static PyObject* applyBoolGetitem(const Variable& self, bool index) {
|
|
if (index) {
|
|
return wrap(self.type().copy(self.unsqueeze(0)));
|
|
} else {
|
|
return wrap(self.type().tensor({0}));
|
|
}
|
|
}
|
|
|
|
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
AutoGPU auto_gpu(self_);
|
|
|
|
// handle simple types: integers, slices, ellipsis
|
|
if (index == Py_None) {
|
|
return wrap(self_.unsqueeze(0));
|
|
} else if (index == Py_Ellipsis) {
|
|
return wrap(at::alias(self_));
|
|
} else if (THPUtils_checkLong(index)) {
|
|
return wrap(applySelect(self_, 0, THPUtils_unpackLong(index)));
|
|
} else if (PyBool_Check(index)) {
|
|
return applyBoolGetitem(self_, index == Py_True);
|
|
} else if (PySlice_Check(index)) {
|
|
return wrap(applySlice(self_, 0, index, true));
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
if (sliced.is_same(self_)) {
|
|
// ensure we return a shallow copy for things like x[...]
|
|
sliced = at::alias(sliced);
|
|
}
|
|
return wrap(sliced);
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
return applyBoolGetitem(self_, variableIndices[0].toCByte());
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
return wrap(dispatch_index(sliced, variableIndices));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static void copy_to(Variable dst, const Variable& src) {
|
|
Tensor b_src;
|
|
// To match numpy semantics:
|
|
// As a special case for backwards compatibility,
|
|
// strip away unit dimensions from the left of 'src'
|
|
auto src_sizes = src.sizes();
|
|
size_t first_nonzero_src = src_sizes.size();
|
|
for (size_t i = 0; i < src_sizes.size(); ++i) {
|
|
if (src_sizes[i] != 1) {
|
|
first_nonzero_src = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
src_sizes = src_sizes.slice(first_nonzero_src);
|
|
std::tie(b_src) = expand_inplace(dst, src.view(src_sizes), "setitem");
|
|
dst.copy_(b_src);
|
|
}
|
|
|
|
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
AutoGPU auto_gpu(self_);
|
|
auto value = valueToTensor(self_.type(), py_value);
|
|
|
|
// handle simple types: integers, slices, ellipsis, bool
|
|
if (index == Py_False) {
|
|
// do nothing for false (technically we should check the size, but we don't have
|
|
// real 0-sized shapes.
|
|
return 0;
|
|
} else if (index == Py_Ellipsis) {
|
|
copy_to(self_, value);
|
|
return 0;
|
|
} else if (index == Py_None || index == Py_True) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
return 0;
|
|
} else if (THPUtils_checkLong(index)) {
|
|
copy_to(applySelect(self_, 0, THPUtils_unpackLong(index)), value);
|
|
return 0;
|
|
} else if (PySlice_Check(index)) {
|
|
copy_to(applySlice(self_, 0, index), value);
|
|
return 0;
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
copy_to(sliced, value);
|
|
return 0;
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
if (variableIndices[0].toCByte()) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
dispatch_index_put_(sliced, variableIndices, value);
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
}} // namespace torch::autograd
|