mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134215 Approved by: https://github.com/amjames, https://github.com/jansel
1392 lines
52 KiB
Python
1392 lines
52 KiB
Python
# mypy: ignore-errors
|
|
|
|
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import itertools
|
|
import random
|
|
import sys
|
|
import types
|
|
import warnings
|
|
from typing import Dict, Generic, List, TYPE_CHECKING
|
|
|
|
import torch._dynamo.config
|
|
import torch.nn
|
|
from torch._guards import TracingContext
|
|
|
|
from .. import polyfills, variables
|
|
from ..bytecode_transformation import create_call_function
|
|
from ..create_parameter_op import do_not_convert_to_tracable_parameter
|
|
from ..exc import (
|
|
handle_observed_exception,
|
|
ObservedAttributeError,
|
|
raise_observed_exception,
|
|
unimplemented,
|
|
)
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import (
|
|
AttrSource,
|
|
GetItemSource,
|
|
ODictGetItemSource,
|
|
RandomValueSource,
|
|
UnspecializedParamBufferSource,
|
|
WeakRefCallSource,
|
|
)
|
|
from ..utils import (
|
|
build_checkpoint_variable,
|
|
check_constant_args,
|
|
get_custom_getattr,
|
|
has_torch_function,
|
|
is_frozen_dataclass,
|
|
is_namedtuple_cls,
|
|
is_utils_checkpoint,
|
|
is_wrapper_or_member_descriptor,
|
|
istype,
|
|
namedtuple_fields,
|
|
object_has_getattribute,
|
|
proxy_args_kwargs,
|
|
tensortype_to_dtype,
|
|
unpatched_nn_module_getattr,
|
|
)
|
|
from .base import MutableLocal, VariableTracker
|
|
from .dicts import DefaultDictVariable
|
|
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
try:
|
|
from torch.utils._cxx_pytree import PyTreeSpec
|
|
except ImportError:
|
|
PyTreeSpec = type(None)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
|
|
|
|
def is_standard_setattr(val):
|
|
return val in (object.__setattr__,)
|
|
|
|
|
|
def is_forbidden_context_manager(ctx):
|
|
f_ctxs = []
|
|
|
|
try:
|
|
from _pytest.python_api import RaisesContext
|
|
from _pytest.recwarn import WarningsChecker
|
|
|
|
# TODO mlazos: Temporary to get this stack to pass
|
|
# remove in subsequent PR
|
|
from torch.overrides import BaseTorchFunctionMode
|
|
|
|
f_ctxs.append(BaseTorchFunctionMode)
|
|
f_ctxs.append(RaisesContext)
|
|
f_ctxs.append(WarningsChecker)
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
from torch.testing._internal.jit_utils import (
|
|
_AssertRaisesRegexWithHighlightContext,
|
|
)
|
|
|
|
f_ctxs.append(_AssertRaisesRegexWithHighlightContext)
|
|
except ImportError:
|
|
pass
|
|
|
|
return ctx in f_ctxs
|
|
|
|
|
|
class UserDefinedVariable(VariableTracker):
|
|
pass
|
|
|
|
|
|
class UserDefinedClassVariable(UserDefinedVariable):
|
|
def __init__(self, value, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def as_proxy(self):
|
|
return self.value
|
|
|
|
def __str__(self) -> str:
|
|
return f"UserDefinedClassVariable({self.value})"
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _constant_fold_classes():
|
|
return {
|
|
torch.device,
|
|
torch.finfo,
|
|
torch.iinfo,
|
|
torch.Size,
|
|
}
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _in_graph_classes():
|
|
_in_graph_class_list = {
|
|
torch.Tensor,
|
|
torch.cuda.Stream,
|
|
torch.cuda.Event,
|
|
}
|
|
if hasattr(torch, "hpu"):
|
|
_in_graph_class_list.update(
|
|
{
|
|
torch.hpu.Stream,
|
|
torch.hpu.Event,
|
|
}
|
|
)
|
|
|
|
return set(tensortype_to_dtype.keys()) | _in_graph_class_list
|
|
|
|
def can_constant_fold_through(self):
|
|
return self.value in self._constant_fold_classes()
|
|
|
|
def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
|
|
mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
|
|
return not isinstance(mutated_attr, variables.DeletedVariable)
|
|
|
|
return key in self.value.__dict__
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
from . import ConstantVariable, EnumVariable
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
source = AttrSource(self.source, name) if self.source is not None else None
|
|
|
|
if name == "__name__":
|
|
return ConstantVariable.create(self.value.__name__)
|
|
elif name == "__qualname__":
|
|
return ConstantVariable.create(self.value.__qualname__)
|
|
elif name == "__dict__":
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
# Special handling of collections.OrderedDict.fromkeys()
|
|
# Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with
|
|
# collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method().
|
|
# Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys),
|
|
# and we need duplicate code to handle both cases.
|
|
if (
|
|
self.value in {collections.OrderedDict, collections.defaultdict}
|
|
and name == "fromkeys"
|
|
):
|
|
return super().var_getattr(tx, name)
|
|
|
|
try:
|
|
obj = inspect.getattr_static(self.value, name)
|
|
except AttributeError:
|
|
obj = None
|
|
|
|
if isinstance(obj, staticmethod):
|
|
func = obj.__get__(self.value)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif isinstance(obj, classmethod):
|
|
return variables.UserMethodVariable(obj.__func__, self, source=source)
|
|
elif isinstance(obj, types.ClassMethodDescriptorType):
|
|
# e.g.: inspect.getattr_static(dict, "fromkeys")
|
|
# inspect.getattr_static(itertools.chain, "from_iterable")
|
|
func = obj.__get__(None, self.value)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif source:
|
|
# __mro__ is a member in < 3.12, an attribute in >= 3.12
|
|
if inspect.ismemberdescriptor(obj) or (
|
|
sys.version_info >= (3, 12) and name == "__mro__"
|
|
):
|
|
return VariableBuilder(tx, source)(obj.__get__(self.value))
|
|
|
|
if ConstantVariable.is_literal(obj):
|
|
return ConstantVariable.create(obj)
|
|
elif isinstance(obj, enum.Enum):
|
|
return EnumVariable(obj)
|
|
elif name in getattr(self.value, "__dict__", {}) or (
|
|
self.value.__module__.startswith("torch.")
|
|
or self.value.__module__ == "torch"
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(obj)
|
|
|
|
if (
|
|
source
|
|
and not inspect.ismethoddescriptor(obj)
|
|
and not is_wrapper_or_member_descriptor(obj)
|
|
):
|
|
return VariableBuilder(tx, source)(obj)
|
|
return super().var_getattr(tx, name)
|
|
|
|
def _call_cross_entropy_loss(self, tx: "InstructionTranslator", args, kwargs):
|
|
"""
|
|
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional loss call: input, target, optional_output
|
|
"""
|
|
from . import ConstantVariable
|
|
|
|
def normalize_args(
|
|
weight=ConstantVariable.create(None),
|
|
size_average=ConstantVariable.create(None),
|
|
ignore_index=ConstantVariable.create(-100),
|
|
reduce=ConstantVariable.create(None),
|
|
reduction=ConstantVariable.create("mean"),
|
|
label_smoothing=ConstantVariable.create(0.0),
|
|
):
|
|
return (
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce,
|
|
reduction,
|
|
label_smoothing,
|
|
)
|
|
|
|
(
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
) = normalize_args(*args, **kwargs)
|
|
|
|
def fake_cross_entropy_loss(input, target):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.nn.functional.cross_entropy,
|
|
*proxy_args_kwargs(
|
|
[
|
|
input,
|
|
target,
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
],
|
|
{},
|
|
),
|
|
),
|
|
)
|
|
|
|
return variables.LambdaVariable(fake_cross_entropy_loss)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__subclasses__"
|
|
and len(args) == 0
|
|
and not kwargs
|
|
and "__subclasses__" not in self.value.__dict__
|
|
):
|
|
options = {"mutable_local": MutableLocal()}
|
|
subs_as_vars: List[VariableTracker] = []
|
|
for sub in self.value.__subclasses__():
|
|
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
|
|
subs_as_vars.append(
|
|
variables.UserDefinedClassVariable(sub, source=source)
|
|
)
|
|
|
|
return variables.ListVariable(subs_as_vars, **options)
|
|
elif (
|
|
self.value in {collections.OrderedDict, collections.defaultdict}
|
|
and name == "fromkeys"
|
|
):
|
|
from .builtin import BuiltinVariable
|
|
|
|
return BuiltinVariable.call_custom_dict_fromkeys(
|
|
tx, self.value, *args, **kwargs
|
|
)
|
|
elif name == "__eq__" and len(args) == 1 and hasattr(args[0], "value"):
|
|
return variables.ConstantVariable(self.value == args[0].value)
|
|
elif name == "__ne__" and len(args) == 1 and hasattr(args[0], "value"):
|
|
return variables.ConstantVariable(self.value != args[0].value)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from ..side_effects import SideEffects
|
|
from .builder import SourcelessBuilder, wrap_fx_proxy
|
|
from .builtin import BuiltinVariable
|
|
|
|
constant_args = check_constant_args(args, kwargs)
|
|
|
|
if self.can_constant_fold_through() and constant_args:
|
|
# constant fold
|
|
return variables.ConstantVariable.create(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
)
|
|
elif self.value is torch.nn.CrossEntropyLoss:
|
|
return self._call_cross_entropy_loss(tx, args, kwargs)
|
|
elif self.value is contextlib.nullcontext:
|
|
# import here to avoid circular dependency
|
|
from .ctx_manager import NullContextVariable
|
|
|
|
return NullContextVariable()
|
|
elif self.value is collections.OrderedDict:
|
|
return BuiltinVariable.call_custom_dict(
|
|
tx, collections.OrderedDict, *args, **kwargs
|
|
)
|
|
elif (
|
|
self.value is collections.defaultdict
|
|
and len(args) <= 1
|
|
and DefaultDictVariable.is_supported_arg(args[0])
|
|
):
|
|
return DefaultDictVariable(
|
|
{},
|
|
collections.defaultdict,
|
|
args[0],
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif self.value is collections.deque and not kwargs:
|
|
if len(args) == 0:
|
|
items = []
|
|
elif len(args) == 1 and args[0].has_unpack_var_sequence(tx):
|
|
items = args[0].unpack_var_sequence(tx)
|
|
else:
|
|
unimplemented("deque() with more than 1 arg not supported")
|
|
return variables.lists.DequeVariable(items, mutable_local=MutableLocal())
|
|
elif self.value is functools.partial:
|
|
if not args:
|
|
unimplemented("functools.partial malformed")
|
|
# The first arg, a callable (the ctor below will assert on types)
|
|
fn = args[0]
|
|
rest_args = args[1:]
|
|
# guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the
|
|
# args and keywords
|
|
return variables.functions.FunctoolsPartialVariable(
|
|
fn, args=rest_args, keywords=kwargs
|
|
)
|
|
elif self.value is warnings.catch_warnings and not args:
|
|
return variables.CatchWarningsCtxManagerVariable.create(tx, kwargs)
|
|
elif self.value is torch.cuda.device and not kwargs and len(args) == 1:
|
|
assert args[0].is_python_constant()
|
|
return variables.CUDADeviceVariable.create(tx, args[0].as_python_constant())
|
|
elif (
|
|
issubclass(type(self.value), type)
|
|
and hasattr(
|
|
self.value, "__enter__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and hasattr(
|
|
self.value, "__exit__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
and not is_forbidden_context_manager(self.value)
|
|
):
|
|
# import here to avoid an unfortunate circular dependency.
|
|
from .ctx_manager import GenericContextWrappingVariable
|
|
|
|
cm_obj = tx.output.side_effects.track_object_new(
|
|
self.source, self.value, GenericContextWrappingVariable, {}
|
|
)
|
|
cm_obj.call_method(tx, "__init__", args, kwargs)
|
|
return cm_obj
|
|
|
|
elif is_namedtuple_cls(self.value):
|
|
fields = namedtuple_fields(self.value)
|
|
# check if this a quasi-namedtuple or a real one
|
|
if self.value.__module__ == "torch.return_types":
|
|
# create pseudo-defaults from values of the quasi-namedtuple
|
|
field_defaults = dict(zip(fields, args[0].items))
|
|
else:
|
|
field_defaults = self.value._field_defaults
|
|
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
var_tracker_kwargs = {}
|
|
for field_name, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field_name in kwargs:
|
|
field_var = kwargs[field_name]
|
|
else:
|
|
assert field_name in field_defaults
|
|
field_var = SourcelessBuilder.create(
|
|
tx, field_defaults[field_name]
|
|
)
|
|
var_tracker_kwargs[field_name] = field_var
|
|
|
|
for name, value in var_tracker_kwargs.items():
|
|
assert name in fields
|
|
items[fields.index(name)] = value
|
|
|
|
assert all(x is not None for x in items)
|
|
return variables.NamedTupleVariable(items, self.value)
|
|
elif is_frozen_dataclass(self.value) and self.is_standard_new():
|
|
from .builder import SourcelessBuilder
|
|
|
|
fields = dataclasses.fields(self.value)
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
default_kwargs = {}
|
|
for field, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field.name in kwargs:
|
|
var_tracker = kwargs[field.name]
|
|
else:
|
|
if not field.init:
|
|
continue
|
|
|
|
if field.default is not dataclasses.MISSING:
|
|
var_tracker = SourcelessBuilder.create(tx, field.default)
|
|
elif field.default_factory is not dataclasses.MISSING:
|
|
factory_fn = SourcelessBuilder.create(
|
|
tx, field.default_factory
|
|
)
|
|
var_tracker = factory_fn.call_function(tx, [], {})
|
|
else:
|
|
# if we are subclass, the constructor could possibly
|
|
# be missing args
|
|
continue
|
|
|
|
default_kwargs[field.name] = var_tracker
|
|
kwargs.update(default_kwargs)
|
|
|
|
var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif (
|
|
self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
|
|
with do_not_convert_to_tracable_parameter():
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif variables.CustomizedDictVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.CustomizedDictVariable.create(
|
|
self.value, args, kwargs, options
|
|
)
|
|
elif (
|
|
variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
|
|
and self.source
|
|
):
|
|
return variables.RestrictedListSubclassVariable(
|
|
variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
|
|
user_cls=self.value,
|
|
user_cls_source=self.source,
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif self.value in self._in_graph_classes():
|
|
# torch.LongTensor cannot accept a list of FakeTensors.
|
|
# So we stack the list of FakeTensors instead.
|
|
if (
|
|
np
|
|
and self.value in tensortype_to_dtype
|
|
and len(args) == 1
|
|
and isinstance(args[0], variables.ListVariable)
|
|
and len(args[0].items) > 1
|
|
and all(isinstance(x, variables.TensorVariable) for x in args[0].items)
|
|
):
|
|
# Stack FakeTensor
|
|
stacked = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.stack,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
args = [stacked]
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
self.value,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
|
|
return tensor_variable
|
|
elif issubclass(self.value, enum.Enum) and len(args) == 1 and not kwargs:
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.EnumVariable.create(self.value, args[0], options)
|
|
elif self.value is random.Random:
|
|
if len(args) == 1 and isinstance(args[0], variables.ConstantVariable):
|
|
seed = args[0].value
|
|
else:
|
|
seed = None
|
|
random_object = random.Random(seed)
|
|
return RandomVariable(random_object)
|
|
elif (
|
|
not self.is_standard_new()
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
return tx.inline_user_function_return(
|
|
SourcelessBuilder.create(
|
|
tx, polyfills.instantiate_user_defined_class_object
|
|
),
|
|
[self, *args],
|
|
kwargs,
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def is_standard_new(self):
|
|
"""Check for __new__ being overridden"""
|
|
new_fn = inspect.getattr_static(self.value, "__new__", None)
|
|
if isinstance(new_fn, staticmethod):
|
|
new_fn = new_fn.__func__
|
|
return new_fn in (object.__new__, Generic.__new__)
|
|
|
|
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if self.source:
|
|
source = AttrSource(self.source, name)
|
|
install_guard(source.make_guard(GuardBuilder.HASATTR))
|
|
return variables.ConstantVariable(hasattr(self.value, name))
|
|
return super().call_hasattr(tx, name)
|
|
|
|
def const_getattr(self, tx: "InstructionTranslator", name):
|
|
if name == "__name__":
|
|
return self.value.__name__
|
|
return super().const_getattr(tx, name)
|
|
|
|
|
|
class NO_SUCH_SUBOBJ:
|
|
pass
|
|
|
|
|
|
def call_random_fn(tx, fn, args, kwargs):
|
|
from .builder import VariableBuilder
|
|
|
|
args = [x.as_python_constant() for x in args]
|
|
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
random_call_index = len(tx.output.random_calls)
|
|
example_value = fn(*args, **kwargs)
|
|
source = RandomValueSource(random_call_index)
|
|
tx.output.random_calls.append((fn, args, kwargs))
|
|
# TODO: arguably, this should route to wrap_symint/wrap_symfloat
|
|
# (currently hypothetical), but I'm not going to poke my hand in
|
|
# this nest for now
|
|
return VariableBuilder(tx, source).wrap_unspecialized_primitive(example_value)
|
|
|
|
|
|
class UserDefinedObjectVariable(UserDefinedVariable):
|
|
"""
|
|
Mostly objects of defined type. Catch-all for something where we only know the type.
|
|
"""
|
|
|
|
_nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}
|
|
|
|
def __init__(self, value, value_type=None, cls_source=None, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
self.value_type = value_type or type(value)
|
|
assert type(value) is self.value_type
|
|
# This is used with __new__, when the new object is sourceless but the user class can be sourceful.
|
|
self.cls_source = cls_source
|
|
|
|
def __str__(self) -> str:
|
|
inner = self.value_type.__name__
|
|
if inner in [
|
|
"builtin_function_or_method",
|
|
"getset_descriptor",
|
|
"method_descriptor",
|
|
"method",
|
|
]:
|
|
inner = str(getattr(self.value, "__name__", None))
|
|
return f"{self.__class__.__name__}({inner})"
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.value_type.__name__})"
|
|
|
|
def python_type(self):
|
|
return self.value_type
|
|
|
|
def guard_as_python_constant(self):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
|
|
return self.value
|
|
return super().guard_as_python_constant()
|
|
|
|
def torch_function_check(self):
|
|
assert has_torch_function(
|
|
self
|
|
), f"calling torch function on object without __torch_function__ {self}"
|
|
|
|
def get_torch_fn(self, tx):
|
|
self.torch_function_check()
|
|
from .torch_function import build_torch_function_fn
|
|
|
|
return build_torch_function_fn(tx, self.value, self.source)
|
|
|
|
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
|
|
self.torch_function_check()
|
|
|
|
from .torch_function import _get_subclass_type_var, call_torch_function
|
|
|
|
return call_torch_function(
|
|
tx,
|
|
_get_subclass_type_var(tx, self),
|
|
self.get_torch_fn(tx),
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _supported_random_functions():
|
|
fns = {
|
|
random.random,
|
|
random.randint,
|
|
random.randrange,
|
|
random.uniform,
|
|
}
|
|
return fns
|
|
|
|
def _maybe_get_baseclass_method(self, name):
|
|
if name not in getattr(self.value, "__dict__", {}):
|
|
try:
|
|
return inspect.getattr_static(type(self.value), name)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
BuiltinVariable,
|
|
ConstantVariable,
|
|
TupleVariable,
|
|
UserMethodVariable,
|
|
)
|
|
|
|
method = self._maybe_get_baseclass_method(name)
|
|
if method is not None:
|
|
if method is object.__init__:
|
|
return ConstantVariable.create(None)
|
|
|
|
if is_standard_setattr(method):
|
|
return self.method_setattr_standard(tx, *args, **kwargs)
|
|
|
|
# [NOTE] OrderedDict, dict subtypes must always have source
|
|
# We cannot instantiate such subtypes in-graph due to builtin __new__
|
|
if method is collections.OrderedDict.keys:
|
|
# subclass of OrderedDict
|
|
assert not (args or kwargs)
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
keys = list(self.value.keys())
|
|
assert all(map(ConstantVariable.is_literal, keys))
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
tx.output.guard_on_key_order.add(self.source.name())
|
|
return TupleVariable([ConstantVariable.create(k) for k in keys])
|
|
|
|
if (
|
|
method in (collections.OrderedDict.__contains__, dict.__contains__)
|
|
and len(args) == 1
|
|
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
|
|
and inspect.getattr_static(type(self.value), "keys")
|
|
in (collections.OrderedDict.keys, dict.keys)
|
|
):
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
|
|
# TODO(anijain2305) - Why do we need to guard on all keys?
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
return ConstantVariable.create(
|
|
args[0].as_python_constant() in self.value
|
|
)
|
|
|
|
if method is collections.OrderedDict.items and isinstance(
|
|
self.value, collections.OrderedDict
|
|
):
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
assert not (args or kwargs)
|
|
items = []
|
|
keys = self.call_method(tx, "keys", [], {})
|
|
for key in keys.unpack_var_sequence(tx):
|
|
items.append(
|
|
TupleVariable(
|
|
[key, self.odict_getitem(tx, key)],
|
|
)
|
|
)
|
|
tx.output.guard_on_key_order.add(self.source.name())
|
|
return TupleVariable(items)
|
|
|
|
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
return self.odict_getitem(tx, args[0])
|
|
|
|
if (
|
|
method in (object.__ne__, object.__eq__)
|
|
and len(args) == 1
|
|
and not kwargs
|
|
and hasattr(args[0], "value")
|
|
):
|
|
return ConstantVariable(
|
|
(self.value is args[0].value) is (method is object.__eq__)
|
|
)
|
|
|
|
# check for methods implemented in C++
|
|
if isinstance(method, types.FunctionType):
|
|
source = (
|
|
None
|
|
if self.source is None
|
|
else AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)
|
|
# TODO(jansel): add a guard to check for monkey patching?
|
|
from ..mutation_guard import unpatched_nn_module_init
|
|
|
|
if method is torch.nn.Module.__init__:
|
|
method = unpatched_nn_module_init
|
|
return UserMethodVariable(method, self, source=source).call_function(
|
|
tx, args, kwargs
|
|
)
|
|
|
|
if method is list.__len__ and self.source and not (args or kwargs):
|
|
install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
|
|
return ConstantVariable(len(self.value))
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
|
|
try:
|
|
name = name.as_python_constant()
|
|
except NotImplementedError:
|
|
unimplemented(f"non-const setattr name: {name}")
|
|
if not tx.output.side_effects.is_attribute_mutation(self):
|
|
unimplemented(f"setattr({self}, {name}, ...)")
|
|
|
|
tx.output.side_effects.store_attr(self, name, value)
|
|
return variables.ConstantVariable(None)
|
|
|
|
def needs_slow_setattr(self):
|
|
return not is_standard_setattr(
|
|
inspect.getattr_static(self.value, "__setattr__", None)
|
|
)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
if (
|
|
self.source
|
|
and self._maybe_get_baseclass_method("__iter__") is list.__iter__
|
|
and self._maybe_get_baseclass_method("__len__") is list.__len__
|
|
and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
|
|
):
|
|
install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
|
|
return [
|
|
variables.LazyVariableTracker.create(
|
|
self.value[k],
|
|
source=GetItemSource(self.source, k),
|
|
)
|
|
for k in range(len(self.value))
|
|
]
|
|
return super().unpack_var_sequence(tx)
|
|
|
|
def next_variable(self, tx):
|
|
return self.call_method(tx, "__next__", [], {})
|
|
|
|
def is_supported_random(self):
|
|
try:
|
|
return self.value in self._supported_random_functions()
|
|
except TypeError:
|
|
# TypeError: unhashable type
|
|
return False
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .. import trace_rules
|
|
from .builder import VariableBuilder
|
|
|
|
if (
|
|
self.is_supported_random()
|
|
and all(k.is_python_constant() for k in args)
|
|
and all(v.is_python_constant() for v in kwargs.values())
|
|
):
|
|
return call_random_fn(tx, self.value, args, kwargs)
|
|
elif istype(self.value, types.MethodType):
|
|
func = self.value.__func__
|
|
obj = self.value.__self__
|
|
if (
|
|
func is torch.utils._contextlib._DecoratorContextManager.clone
|
|
and variables.TorchCtxManagerClassVariable.is_matching_cls(
|
|
obj.__class__
|
|
)
|
|
and not (args or kwargs)
|
|
):
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, args, kwargs)
|
|
|
|
if (
|
|
func is torch.autograd.grad_mode.inference_mode.clone
|
|
and obj.__class__ is torch.autograd.grad_mode.inference_mode
|
|
):
|
|
# simulate the inference_mode.clone implementation
|
|
var = variables.ConstantVariable(obj.mode)
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, [var], kwargs)
|
|
|
|
if self.source is None:
|
|
unimplemented(
|
|
"Sourceless UserDefinedObjectVariable method not supported"
|
|
)
|
|
func_src = AttrSource(self.source, "__func__")
|
|
func_var = VariableBuilder(tx, func_src)(func)
|
|
obj_src = AttrSource(self.source, "__self__")
|
|
obj_var = VariableBuilder(tx, obj_src)(obj)
|
|
return func_var.call_function(tx, [obj_var] + args, kwargs)
|
|
elif (
|
|
istype(self.value, functools.partial)
|
|
and trace_rules.lookup(self.value.func)
|
|
== variables.TorchInGraphFunctionVariable
|
|
and all(
|
|
variables.ConstantVariable.is_literal(v)
|
|
for v in itertools.chain(self.value.args, self.value.keywords.values())
|
|
)
|
|
):
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
|
|
AttrSource(self.source, "args").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
AttrSource(self.source, "keywords").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
)
|
|
|
|
partial_args = [
|
|
variables.ConstantVariable.create(v) for v in self.value.args
|
|
]
|
|
partial_args.extend(args)
|
|
partial_kwargs = {
|
|
k: variables.ConstantVariable.create(v)
|
|
for k, v in self.value.keywords.items()
|
|
}
|
|
partial_kwargs.update(kwargs)
|
|
if is_utils_checkpoint(self.value.func):
|
|
return build_checkpoint_variable().call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
return variables.TorchInGraphFunctionVariable(
|
|
self.value.func
|
|
).call_function(tx, partial_args, partial_kwargs)
|
|
elif callable(self.value):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return self.call_method(tx, "__call__", args, kwargs)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _check_for_getattribute(self):
|
|
if object_has_getattribute(self.value):
|
|
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
|
|
|
|
def _check_for_getattr(self):
|
|
return get_custom_getattr(self.value)
|
|
|
|
def _is_c_defined_property(self, subobj):
|
|
if not isinstance(subobj, property):
|
|
return False
|
|
|
|
# pybind def_readwrite is implemented via PyCFunction. At the python level, it is visible as a property whose
|
|
# fget is an instancemethod wrapper - https://docs.python.org/3/c-api/method.html#c.PyInstanceMethod_Check
|
|
|
|
# If we have a PyCFunction, we make an assumption that there is no side effect.
|
|
return isinstance(
|
|
subobj.fget, types.BuiltinFunctionType
|
|
) or torch._C._dynamo.utils.is_instancemethod(subobj.fget)
|
|
|
|
def _getattr_static(self, name):
|
|
subobj = inspect.getattr_static(self.value, name, NO_SUCH_SUBOBJ)
|
|
import _collections
|
|
|
|
# In some cases, we have to do dynamic lookup because getattr_static is not enough. For example, threading.local
|
|
# has side-effect free __getattribute__ and the attribute is not visible without a dynamic lookup.
|
|
if (
|
|
subobj is NO_SUCH_SUBOBJ # e.g., threading.local
|
|
or isinstance(
|
|
subobj, _collections._tuplegetter
|
|
) # namedtuple fields are represented by _tuplegetter
|
|
or (
|
|
inspect.ismemberdescriptor(subobj) and name in self.value.__slots__
|
|
) # handle memberdecriptor and slots
|
|
or self._is_c_defined_property(subobj)
|
|
):
|
|
# Call __getattribute__, we have already checked that this is not overridden and side-effect free. We don't
|
|
# want to call getattr because it can be user-overridden.
|
|
subobj = self.value.__getattribute__(name)
|
|
|
|
return subobj
|
|
|
|
def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
|
|
self._check_for_getattribute()
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
|
|
mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
|
|
return not isinstance(mutated_attr, variables.DeletedVariable)
|
|
|
|
return key in self.value.__dict__
|
|
|
|
def is_supported_nn_module_method(self, method):
|
|
return torch._dynamo.config.inline_inbuilt_nn_modules and method in (
|
|
torch.nn.Module.parameters,
|
|
)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
from .. import trace_rules
|
|
from . import ConstantVariable
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
source = AttrSource(self.source, name) if self.source else None
|
|
self._check_for_getattribute()
|
|
|
|
if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
|
|
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
|
|
if isinstance(result, variables.DeletedVariable):
|
|
raise_observed_exception(AttributeError, tx, self)
|
|
return result
|
|
|
|
if name == "__dict__":
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
# TODO(anijain2305) - Investigate if we need specialization for more
|
|
# dunder attrs. inspect.getattr_static does not return correct value for
|
|
# them.
|
|
if name == "__class__":
|
|
cls_source = source
|
|
if cls_source is None:
|
|
cls_source = self.cls_source
|
|
options = {"source": cls_source}
|
|
return UserDefinedClassVariable(type(self.value), **options)
|
|
|
|
try:
|
|
subobj = self._getattr_static(name)
|
|
except AttributeError:
|
|
subobj = NO_SUCH_SUBOBJ
|
|
getattr_fn = self._check_for_getattr()
|
|
if isinstance(getattr_fn, types.FunctionType):
|
|
# Dynamo is going to trace the __getattr__ function with
|
|
# args=name. Set the source accordingly.
|
|
if getattr_fn is unpatched_nn_module_getattr and isinstance(
|
|
self, variables.UnspecializedNNModuleVariable
|
|
):
|
|
# Manually trace out the nn module __getattr__ to avoid large compilation latency.
|
|
out = self.manually_trace_nn_module_getattr(tx, name)
|
|
else:
|
|
new_source = None
|
|
if self.source:
|
|
new_source = AttrSource(self.source, "__getattr__")
|
|
out = variables.UserMethodVariable(
|
|
getattr_fn, self, source=new_source
|
|
).call_function(tx, [ConstantVariable.create(name)], {})
|
|
|
|
if self.source and getattr_fn is torch.nn.Module.__getattr__:
|
|
if isinstance(
|
|
out,
|
|
(
|
|
variables.UnspecializedNNModuleVariable,
|
|
variables.NNModuleVariable,
|
|
),
|
|
):
|
|
# nn_module_stack source is BC surface area. Ensure that
|
|
# mod._modules["linear"] is reflected as mod.linear for
|
|
# nn_module_stack.
|
|
out.set_nn_module_stack_source(
|
|
AttrSource(self.get_nn_module_stack_source(), name)
|
|
)
|
|
return out
|
|
|
|
elif getattr_fn is not None:
|
|
unimplemented("UserDefined with non-function __getattr__")
|
|
|
|
if isinstance(subobj, property):
|
|
if self.source:
|
|
# Read the class attribute to reach the property
|
|
source = AttrSource(AttrSource(self.source, "__class__"), name)
|
|
# Get the getter function
|
|
source = AttrSource(source, "fget")
|
|
return variables.UserMethodVariable(
|
|
subobj.fget, self, source=source
|
|
).call_function(tx, [], {})
|
|
elif isinstance(subobj, staticmethod):
|
|
func = subobj.__get__(self.value)
|
|
if source is not None:
|
|
return trace_rules.lookup(func).create_with_source(func, source=source)
|
|
else:
|
|
return trace_rules.lookup(func)(func)
|
|
elif isinstance(subobj, classmethod):
|
|
return variables.UserMethodVariable(
|
|
subobj.__func__, self.var_getattr(tx, "__class__"), source=source
|
|
)
|
|
elif isinstance(subobj, types.ClassMethodDescriptorType):
|
|
# e.g.: inspect.getattr_static({}, "fromkeys")
|
|
func = subobj.__get__(self.value, None)
|
|
if source is not None:
|
|
return VariableBuilder(tx, source)(func)
|
|
else:
|
|
return SourcelessBuilder.create(tx, func)
|
|
elif inspect.ismethoddescriptor(subobj) and not is_wrapper_or_member_descriptor(
|
|
subobj.__get__
|
|
):
|
|
# Attribute has a __get__ method. Create a user defined object vt
|
|
# for the subobj, and then trace the __get__ method.
|
|
descriptor_var = UserDefinedObjectVariable(subobj, source=source)
|
|
|
|
get_source = self.source
|
|
if self.source:
|
|
get_source = AttrSource(self.source, "__get__")
|
|
|
|
# The arguments of the __get__ function are (self, instance, owner)
|
|
# self - descriptor_var
|
|
# instance - instance of the class, represented by self here
|
|
# owner - class object
|
|
owner_var = UserDefinedClassVariable(type(self.value))
|
|
return variables.UserMethodVariable(
|
|
subobj.__get__.__func__, descriptor_var, source=get_source
|
|
).call_function(tx, [descriptor_var, self, owner_var], {})
|
|
elif isinstance(subobj, types.FunctionType) or (
|
|
isinstance(subobj, types.MethodType)
|
|
and isinstance(self.value, torch.nn.Module)
|
|
):
|
|
if self.is_supported_nn_module_method(subobj):
|
|
return variables.GetAttrVariable(self, name, source=source)
|
|
|
|
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
|
|
# Static lookup can't tell us it's a method or function correctly,
|
|
# so we trigger dynamic lookup here to get the correct type.
|
|
dynamic_subobj = getattr(self.value, name)
|
|
|
|
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
|
|
subobj = subobj._torchdynamo_inline
|
|
dynamic_subobj = subobj
|
|
source = AttrSource(source, "_torchdynamo_inline") if source else None
|
|
|
|
if isinstance(subobj, types.MethodType):
|
|
if dynamic_subobj.__self__ is not self.value:
|
|
unimplemented("__self__ mismatch for bound method")
|
|
func = subobj.__func__
|
|
else:
|
|
assert isinstance(subobj, types.FunctionType)
|
|
func = subobj
|
|
|
|
if inspect.ismethod(dynamic_subobj):
|
|
return variables.UserMethodVariable(func, self, source=source)
|
|
elif inspect.isfunction(dynamic_subobj):
|
|
if is_utils_checkpoint(func):
|
|
return build_checkpoint_variable(source=source)
|
|
elif source is not None:
|
|
return trace_rules.lookup(func).create_with_source(
|
|
func, source=source
|
|
)
|
|
else:
|
|
return trace_rules.lookup(func)(func)
|
|
|
|
if (
|
|
# wrap the source only if inline_inbuilt_nn_modules is set or fsdp modules. This is a temporary solution to
|
|
# keep Dynamo behavior compatible with no inlining, as there will be some delay to turn on the flag in
|
|
# fbcode.
|
|
(
|
|
torch._dynamo.config.inline_inbuilt_nn_modules
|
|
or isinstance(self, variables.FSDPManagedNNModuleVariable)
|
|
)
|
|
and source
|
|
and isinstance(self, variables.UnspecializedNNModuleVariable)
|
|
# export has some awkwardness around specialized and unspecialized modules. Skip wrapping source for export
|
|
# usecase for now.
|
|
and not tx.output.export
|
|
):
|
|
# Recalculate source for params/buffers
|
|
if name in ("_buffers", "_parameters"):
|
|
source = UnspecializedParamBufferSource(self.source, name)
|
|
source = self._wrap_source(source)
|
|
|
|
if subobj is not NO_SUCH_SUBOBJ:
|
|
if is_wrapper_or_member_descriptor(subobj):
|
|
options = {"source": source}
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
if source:
|
|
return variables.LazyVariableTracker.create(subobj, source)
|
|
else:
|
|
# Check if the subobj is accessible from the class itself. If the class source is known, we can create a
|
|
# sourceful variable tracker.
|
|
if self.cls_source is not None:
|
|
subobj_from_class = inspect.getattr_static(
|
|
self.value.__class__, name, NO_SUCH_SUBOBJ
|
|
)
|
|
if subobj_from_class is subobj:
|
|
src_from_class = AttrSource(self.cls_source, name)
|
|
return variables.LazyVariableTracker.create(
|
|
subobj_from_class, src_from_class
|
|
)
|
|
|
|
return SourcelessBuilder.create(tx, subobj)
|
|
|
|
# Earlier we were returning GetAttrVariable but its incorrect. In absence of attr, Python raises AttributeError.
|
|
raise_observed_exception(AttributeError, tx, self)
|
|
|
|
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if self._check_for_getattribute():
|
|
unimplemented("hasattr with custom __getattribute__")
|
|
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
|
|
try:
|
|
var_vt = self.var_getattr(tx, name)
|
|
return variables.ConstantVariable.create(
|
|
not isinstance(var_vt, variables.DeletedVariable)
|
|
)
|
|
except ObservedAttributeError:
|
|
handle_observed_exception(tx)
|
|
return variables.ConstantVariable.create(False)
|
|
|
|
def odict_getitem(self, tx: "InstructionTranslator", key):
|
|
from .builder import VariableBuilder
|
|
from .dicts import is_hashable
|
|
|
|
# TODO this should probably be merged with the dict handling
|
|
|
|
index = (
|
|
key.source
|
|
if is_hashable(key) and key.source is not None
|
|
else key.as_python_constant()
|
|
)
|
|
|
|
return VariableBuilder(
|
|
tx,
|
|
ODictGetItemSource(self.source, index),
|
|
)(collections.OrderedDict.__getitem__(self.value, key.as_python_constant()))
|
|
|
|
|
|
class FrozenDataClassVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def create(tx, value, source):
|
|
from dataclasses import fields
|
|
|
|
assert is_frozen_dataclass(value)
|
|
|
|
from .builder import VariableBuilder
|
|
|
|
field_map = {}
|
|
for field in fields(value):
|
|
if hasattr(value, field.name):
|
|
field_map[field.name] = VariableBuilder(
|
|
tx, AttrSource(source, field.name)
|
|
)(getattr(value, field.name))
|
|
|
|
return FrozenDataClassVariable(value, fields=field_map, source=source)
|
|
|
|
def __init__(self, value, fields=None, **kwargs) -> None:
|
|
super().__init__(value, **kwargs)
|
|
if fields is None:
|
|
fields = {}
|
|
self.fields = fields
|
|
|
|
def as_proxy(self):
|
|
from dataclasses import fields
|
|
|
|
args = []
|
|
kwargs = {}
|
|
for field in fields(self.value):
|
|
proxy = self.fields[field.name].as_proxy()
|
|
if hasattr(field, "kw_only") and field.kw_only:
|
|
kwargs[field.name] = proxy
|
|
else:
|
|
args.append(proxy)
|
|
|
|
return self.python_type()(*args, **kwargs)
|
|
|
|
# NB: This is called during __init__ for a frozen dataclass
|
|
# use this to accumulate the most up-to-date field values
|
|
def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
|
|
self.fields[name.as_python_constant()] = value
|
|
return super().method_setattr_standard(tx, name, value)
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.value_type.__name__})"
|
|
|
|
|
|
class SourcelessGraphModuleVariable(UserDefinedObjectVariable):
|
|
def __init__(
|
|
self,
|
|
value,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(value, **kwargs)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
fn_variable = variables.UserFunctionVariable(self.value.forward.__func__)
|
|
args = [self] + args
|
|
return tx.inline_user_function_return(
|
|
fn_variable,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
|
|
class WeakRefVariable(UserDefinedObjectVariable):
|
|
_nonvar_fields = UserDefinedObjectVariable._nonvar_fields
|
|
|
|
def __init__(self, value, **kwargs) -> None:
|
|
super().__init__(value, **kwargs)
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
call_source = None
|
|
referent = self.value()
|
|
|
|
if self.source:
|
|
from .builder import VariableBuilder
|
|
|
|
call_source = WeakRefCallSource(self.source)
|
|
return VariableBuilder(tx, call_source)(referent)
|
|
else:
|
|
from .builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder.create(tx, referent)
|
|
|
|
|
|
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def is_matching_object(obj):
|
|
mod = sys.modules.get("torchrec.sparse.jagged_tensor")
|
|
return mod is not None and type(obj) is mod.KeyedJaggedTensor
|
|
|
|
def __init__(self, value, **kwargs) -> None:
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
assert type(value) is KeyedJaggedTensor
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
if (
|
|
torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
|
|
and self.source is not None
|
|
and name in ("_length_per_key", "_offset_per_key")
|
|
):
|
|
with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
|
|
return super().var_getattr(tx, name)
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RemovableHandleClass:
|
|
# Dummy class to pass to python_type of RemovableHandleVariable
|
|
# Useful for isinstance check on hooks
|
|
pass
|
|
|
|
|
|
class RemovableHandleVariable(VariableTracker):
|
|
REMOVED = -1
|
|
|
|
def __init__(
|
|
self,
|
|
mutable_local=None,
|
|
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
|
|
idx=None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.mutable_local = mutable_local
|
|
self.idx = idx
|
|
|
|
def call_method(self, tx: "InstructionTranslator", method_name, args, kwargs):
|
|
if method_name == "remove":
|
|
if self.idx != self.REMOVED:
|
|
tx.output.side_effects.remove_hook(self.idx)
|
|
self.idx = self.REMOVED
|
|
return variables.ConstantVariable.create(None)
|
|
super().call_method(tx, method_name, args, kwargs)
|
|
|
|
def reconstruct(self, codegen):
|
|
if self.idx == self.REMOVED:
|
|
# Hook has already been removed, return a dummy handle
|
|
codegen.add_push_null(
|
|
lambda: codegen.load_import_from(
|
|
"torch._dynamo.utils", "invalid_removeable_handle"
|
|
)
|
|
)
|
|
codegen.extend_output(create_call_function(0, False))
|
|
return
|
|
# unreachable due to codegen.add_cache() when the hook is installed
|
|
super().reconstruct(codegen)
|
|
|
|
def python_type(self):
|
|
return RemovableHandleClass
|
|
|
|
|
|
class MutableMappingVariable(UserDefinedObjectVariable):
|
|
_nonvar_fields = UserDefinedObjectVariable._nonvar_fields
|
|
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
|
|
if name == "get" and type(self.value).get is collections.abc.Mapping.get:
|
|
return variables.UserMethodVariable(polyfills.mapping_get, self)
|
|
else:
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RandomVariable(UserDefinedObjectVariable):
|
|
pass
|