mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit d23ecbfc9ac157560611b242f015743f189dbf48. Reverted https://github.com/pytorch/pytorch/pull/73434 on behalf of https://github.com/albanD
1178 lines
52 KiB
Python
1178 lines
52 KiB
Python
from collections import OrderedDict
|
|
import enum
|
|
import functools
|
|
from numbers import Number
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
import warnings
|
|
import copyreg
|
|
from copy import deepcopy
|
|
|
|
import torch
|
|
import torch._C as _C
|
|
from torch._namedtensor_internals import (
|
|
update_names, check_serializing_named_tensor, resolve_ellipsis,
|
|
unzip_namedshape, single_ellipsis_index, is_ellipsis)
|
|
from torch.overrides import (
|
|
has_torch_function, has_torch_function_unary, has_torch_function_variadic,
|
|
handle_torch_function, get_default_nowrap_functions)
|
|
import torch.utils.hooks as hooks
|
|
|
|
|
|
def _handle_torch_function_and_wrap_type_error_to_not_implemented(f):
|
|
# functools.wraps doesn't work well with methods in python 2
|
|
method_assignments = ('__name__', '__doc__')
|
|
assigned = functools.WRAPPER_ASSIGNMENTS
|
|
|
|
@functools.wraps(f, assigned=assigned)
|
|
def wrapped(*args, **kwargs):
|
|
try:
|
|
# See https://github.com/pytorch/pytorch/issues/75462
|
|
if has_torch_function(args):
|
|
return handle_torch_function(wrapped, args, *args, **kwargs)
|
|
return f(*args, **kwargs)
|
|
except TypeError:
|
|
return NotImplemented
|
|
return wrapped
|
|
|
|
# Should not be used, this is kept only for BC of loading old serialized Tensor subclasses
|
|
def _rebuild_from_type(func, type, args, dict):
|
|
if type is Tensor:
|
|
return func(*args)
|
|
|
|
ret = func(*args).as_subclass(type)
|
|
ret.__dict__ = dict
|
|
return ret
|
|
|
|
def _rebuild_from_type_v2(func, new_type, args, state):
|
|
if new_type is Tensor:
|
|
return func(*args)
|
|
|
|
ret = func(*args)
|
|
if type(ret) is not new_type:
|
|
ret = ret.as_subclass(new_type)
|
|
# Tensor does define __setstate__ even though it doesn't define
|
|
# __getstate__. So only use __setstate__ if it is NOT the one defined
|
|
# on Tensor
|
|
if getattr(ret.__class__, "__setstate__", Tensor.__setstate__) is not Tensor.__setstate__:
|
|
ret.__setstate__(state)
|
|
else:
|
|
if isinstance(state, tuple):
|
|
if not len(state) == 2:
|
|
raise RuntimeError(f"Invalid serialized state: {state}")
|
|
dict_state = state[0]
|
|
slots_state = state[1]
|
|
else:
|
|
dict_state = state
|
|
slots_state = None
|
|
|
|
for k, v in dict_state.items():
|
|
setattr(ret, k, v)
|
|
|
|
if slots_state:
|
|
for k, v in slots_state.items():
|
|
setattr(ret, k, v)
|
|
return ret
|
|
|
|
|
|
# NB: If you subclass Tensor, and want to share the subclassed class
|
|
# across processes, you must also update torch/multiprocessing/reductions.py
|
|
# to define a ForkingPickler serialization mode for the class.
|
|
#
|
|
# NB: If you add a new method to Tensor, you must update
|
|
# torch/__init__.py.in to add a type annotation for your method;
|
|
# otherwise, it will not show up in autocomplete.
|
|
class Tensor(torch._C._TensorBase):
|
|
def __deepcopy__(self, memo):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo)
|
|
if not self.is_leaf:
|
|
raise RuntimeError("Only Tensors created explicitly by the user "
|
|
"(graph leaves) support the deepcopy protocol at the moment")
|
|
if id(self) in memo:
|
|
return memo[id(self)]
|
|
with torch.no_grad():
|
|
# TODO: skipping storage copy is wrong for meta, as meta
|
|
# does accurate alias tracking; however, the code below
|
|
# doesn't work because of
|
|
# https://github.com/pytorch/pytorch/issues/47442
|
|
# Update the test in test_serialization if you remove 'meta' from here
|
|
if self.is_sparse or self.device.type in ['lazy', 'xla', 'mps', 'ort', 'meta', 'hpu'] or \
|
|
(type(self) is not Tensor and self.data_ptr() == 0):
|
|
new_tensor = self.clone()
|
|
if type(new_tensor) is not type(self):
|
|
raise RuntimeError("The default implementation of __deepcopy__() for wrapper subclasses "
|
|
"only works for subclass types that implement clone() and for which "
|
|
"cloning returns another instance of the same subclass. You should either "
|
|
"properly implement clone() for your subclass or override __deepcopy__() "
|
|
"if it is intended behavior for clone() to return an instance of a "
|
|
"different type.")
|
|
else:
|
|
new_storage = self.storage().__deepcopy__(memo)
|
|
if self.is_quantized:
|
|
# quantizer_params can be different type based on torch attribute
|
|
quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[torch.qscheme, Tensor, Tensor, int]]
|
|
if self.qscheme() == torch.per_tensor_affine:
|
|
quantizer_params = self.qscheme(), self.q_scale(), self.q_zero_point()
|
|
elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
|
|
quantizer_params = self.qscheme(), \
|
|
self.q_per_channel_scales(), \
|
|
self.q_per_channel_zero_points(), \
|
|
self.q_per_channel_axis()
|
|
else:
|
|
raise RuntimeError(f"Unsupported qscheme {self.qscheme()} in deepcopy")
|
|
# TODO: Once we decide to break serialization FC, no longer
|
|
# need to wrap with _TypedStorage
|
|
new_tensor = torch._utils._rebuild_qtensor(
|
|
torch.storage._TypedStorage(
|
|
wrap_storage=new_storage._untyped(),
|
|
dtype=self.dtype),
|
|
self.storage_offset(),
|
|
self.size(),
|
|
self.stride(),
|
|
quantizer_params,
|
|
self.requires_grad,
|
|
self._backward_hooks)
|
|
if type(new_tensor) is not type(self):
|
|
raise RuntimeError("The default implementation of __deepcopy__() for quantized tensors "
|
|
"expects the tensor returned by torch._utils._rebuild_qtensor() to "
|
|
"match the type of the instance being copied. If you encounter this, "
|
|
"please open an issue on PyTorch's GitHub.")
|
|
else:
|
|
new_tensor = self.new_empty([])
|
|
if type(new_tensor) is not type(self):
|
|
raise RuntimeError("The default implementation of __deepcopy__() for non-wrapper subclasses "
|
|
"only works for subclass types that implement new_empty() and for which "
|
|
"that function returns another instance of the same subclass. You should "
|
|
"either properly implement new_empty() for your subclass or override "
|
|
"__deepcopy__() if it is intended behavior for new_empty() to return "
|
|
"an instance of a different type.")
|
|
new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride())
|
|
if self.is_conj():
|
|
new_tensor = new_tensor.conj_physical()
|
|
if self.is_neg():
|
|
new_tensor = new_tensor.neg()
|
|
if self.requires_grad:
|
|
new_tensor.requires_grad_()
|
|
if self.grad is not None:
|
|
new_tensor.grad = self.grad.__deepcopy__(memo)
|
|
|
|
if not type(self) is Tensor:
|
|
if type(new_tensor) is not type(self):
|
|
raise RuntimeError("Type of deepcopy result does not match the type of the source tensor. "
|
|
"If you encounter this, please open an issue on PyTorch's GitHub.")
|
|
|
|
# Plain Tensors don't have slots
|
|
slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined]
|
|
for slot in slots_to_save:
|
|
if hasattr(self, slot):
|
|
setattr(new_tensor, slot, deepcopy(getattr(self, slot), memo))
|
|
|
|
new_tensor.__dict__ = deepcopy(self.__dict__, memo)
|
|
|
|
memo[id(self)] = new_tensor
|
|
return new_tensor
|
|
|
|
def __reduce_ex__(self, proto):
|
|
if type(self) is Tensor:
|
|
return self._reduce_ex_internal(proto)
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto)
|
|
func, args = self._reduce_ex_internal(proto)
|
|
# Get the state of the python subclass
|
|
# This loosely mimicks the function on the object class but since Tensor do not inherit
|
|
# from it, we cannot call that function directly
|
|
# https://github.com/python/cpython/blob/c83919bd635f4433f1c6ae8504996a9fe3c215e5/Objects/typeobject.c#L4891
|
|
getstate_fn = getattr(self, "__getstate__", None)
|
|
if getstate_fn:
|
|
state = getstate_fn()
|
|
else:
|
|
slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined]
|
|
if slots_to_save:
|
|
state = (self.__dict__, {name: getattr(self, name) for name in slots_to_save if hasattr(self, name)})
|
|
else:
|
|
state = self.__dict__
|
|
return (_rebuild_from_type_v2, (func, type(self), args, state))
|
|
|
|
def storage(self):
|
|
r"""
|
|
storage() -> torch.Storage
|
|
|
|
Returns the underlying storage.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.storage, (self,), self)
|
|
|
|
if self.dtype not in torch.storage._dtype_to_storage_type_map():
|
|
raise RuntimeError(f'unsupported Storage type: {self.dtype}')
|
|
|
|
return torch._TypedStorage(wrap_storage=self._storage(), dtype=self.dtype)
|
|
|
|
def _reduce_ex_internal(self, proto):
|
|
check_serializing_named_tensor(self)
|
|
# See Note [Don't serialize hooks]
|
|
torch.utils.hooks.warn_if_has_hooks(self)
|
|
backward_hooks: Dict[Any, Any] = OrderedDict()
|
|
# Note: Numpy array is chosen to be the rebuild component for XLA, ORT Tensors.
|
|
# We considered a few options:
|
|
# 1. CPU tensor can't be used here.
|
|
# Otherwise in torch.load CPU storage is reconstructed with randomly
|
|
# initialized data, moved onto backend device, and then storage is updated
|
|
# to the serialized content. This works perfectly for CPU/CUDA but not these backends;
|
|
# their tensors are disconnected with storage so they don't get the update.
|
|
# 2. Python list is not a good fit due to performance reason.
|
|
# `tolist()` converts every single element in the tensor into python objects
|
|
# and serialize them one by one.
|
|
if self.device.type in ['xla', 'ort', 'mps', 'hpu']:
|
|
return (torch._utils._rebuild_device_tensor_from_numpy, (self.cpu().numpy(),
|
|
self.dtype,
|
|
str(self.device),
|
|
self.requires_grad))
|
|
if self.device.type == 'meta':
|
|
# NB: This implementation BREAKS storage sharing. Current
|
|
# hypothesis is that no one cares for meta tensors.
|
|
arg_meta = (
|
|
self.dtype,
|
|
tuple(self.size()),
|
|
self.stride(),
|
|
self.requires_grad,
|
|
)
|
|
return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta)
|
|
if self.is_quantized:
|
|
# quantizer_params can be different type based on torch attribute
|
|
quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int]]
|
|
if self.qscheme() == torch.per_tensor_affine:
|
|
quantizer_params = (torch.per_tensor_affine,
|
|
self.q_scale(),
|
|
self.q_zero_point())
|
|
elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
|
|
# convert scales and zero points to tuple to avoid recursive calls
|
|
# when/if we get multi-axis quantized tensors in the future, the shape
|
|
# is recoverable from the main tensor shape
|
|
quantizer_params = (torch.per_channel_affine,
|
|
self.q_per_channel_scales(),
|
|
self.q_per_channel_zero_points(),
|
|
self.q_per_channel_axis())
|
|
else:
|
|
raise RuntimeError(f"Serialization is not supported for tensors of type {self.qscheme()}")
|
|
# TODO: Once we decide to break serialization FC, no longer
|
|
# need to wrap with _TypedStorage
|
|
args_qtensor = (
|
|
torch.storage._TypedStorage(
|
|
wrap_storage=self.storage()._untyped(),
|
|
dtype=self.dtype),
|
|
self.storage_offset(),
|
|
tuple(self.size()),
|
|
self.stride(),
|
|
quantizer_params,
|
|
self.requires_grad,
|
|
backward_hooks)
|
|
return (torch._utils._rebuild_qtensor, args_qtensor)
|
|
elif self.is_sparse:
|
|
if self.layout == torch.sparse_coo:
|
|
args_sparse = (self.layout,
|
|
(self._indices(),
|
|
self._values(),
|
|
self.size()))
|
|
else:
|
|
raise NotImplementedError(
|
|
'sparse tensor __reduce_ex__ for layout `%s`' % (self.layout))
|
|
return (torch._utils._rebuild_sparse_tensor, args_sparse)
|
|
elif self.is_sparse_csr:
|
|
if self.layout == torch.sparse_csr:
|
|
args_sparse_csr = (self.layout,
|
|
(self.crow_indices(),
|
|
self.col_indices(),
|
|
self.values(),
|
|
self.size()))
|
|
else:
|
|
raise NotImplementedError(
|
|
'sparse csr tensor __reduce_ex__ for layout `%s`' % (self.layout))
|
|
return (torch._utils._rebuild_sparse_csr_tensor, args_sparse_csr)
|
|
elif self.data_ptr() == 0 and type(self) is not torch.Tensor:
|
|
arg_wrapper_subclass = (
|
|
type(self),
|
|
self.dtype,
|
|
tuple(self.size()),
|
|
self.stride(),
|
|
self.storage_offset(),
|
|
self.layout,
|
|
self.device,
|
|
self.requires_grad
|
|
)
|
|
return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass)
|
|
else:
|
|
# TODO: Once we decide to break serialization FC, no longer
|
|
# need to wrap with _TypedStorage
|
|
args = (
|
|
torch.storage._TypedStorage(
|
|
wrap_storage=self.storage()._untyped(),
|
|
dtype=self.dtype),
|
|
self.storage_offset(),
|
|
tuple(self.size()),
|
|
self.stride(),
|
|
self.requires_grad,
|
|
backward_hooks) # previously was self._backward_hooks
|
|
return (torch._utils._rebuild_tensor_v2, args)
|
|
|
|
def __setstate__(self, state):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__setstate__, (self,), self, state)
|
|
# Warning: this method is NOT called when you torch.load() a tensor;
|
|
# that is managed by _rebuild_tensor_v2
|
|
if not self.is_leaf:
|
|
raise RuntimeError('__setstate__ can be only called on leaf Tensors')
|
|
if len(state) == 4:
|
|
# legacy serialization of Tensor
|
|
self.set_(*state)
|
|
return
|
|
elif len(state) == 5:
|
|
# legacy serialization of Variable
|
|
self.data = state[0]
|
|
state = (state[3], state[4], state[2])
|
|
# The setting of _backward_hooks is expected to be a no-op.
|
|
# See Note [Don't serialize hooks]
|
|
self.requires_grad, _, self._backward_hooks = state
|
|
|
|
def __repr__(self, *, tensor_contents=None):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__repr__, (self,), self,
|
|
tensor_contents=tensor_contents)
|
|
# All strings are unicode in Python 3.
|
|
return torch._tensor_str._str(self, tensor_contents=tensor_contents)
|
|
|
|
def backward(self, gradient=None, retain_graph=None, create_graph=False, inputs=None):
|
|
r"""Computes the gradient of current tensor w.r.t. graph leaves.
|
|
|
|
The graph is differentiated using the chain rule. If the tensor is
|
|
non-scalar (i.e. its data has more than one element) and requires
|
|
gradient, the function additionally requires specifying ``gradient``.
|
|
It should be a tensor of matching type and location, that contains
|
|
the gradient of the differentiated function w.r.t. ``self``.
|
|
|
|
This function accumulates gradients in the leaves - you might need to zero
|
|
``.grad`` attributes or set them to ``None`` before calling it.
|
|
See :ref:`Default gradient layouts<default-grad-layouts>`
|
|
for details on the memory layout of accumulated gradients.
|
|
|
|
.. note::
|
|
|
|
If you run any forward ops, create ``gradient``, and/or call ``backward``
|
|
in a user-specified CUDA stream context, see
|
|
:ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`.
|
|
|
|
.. note::
|
|
|
|
When ``inputs`` are provided and a given input is not a leaf,
|
|
the current implementation will call its grad_fn (though it is not strictly needed to get this gradients).
|
|
It is an implementation detail on which the user should not rely.
|
|
See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
|
|
|
|
Args:
|
|
gradient (Tensor or None): Gradient w.r.t. the
|
|
tensor. If it is a tensor, it will be automatically converted
|
|
to a Tensor that does not require grad unless ``create_graph`` is True.
|
|
None values can be specified for scalar Tensors or ones that
|
|
don't require grad. If a None value would be acceptable then
|
|
this argument is optional.
|
|
retain_graph (bool, optional): If ``False``, the graph used to compute
|
|
the grads will be freed. Note that in nearly all cases setting
|
|
this option to True is not needed and often can be worked around
|
|
in a much more efficient way. Defaults to the value of
|
|
``create_graph``.
|
|
create_graph (bool, optional): If ``True``, graph of the derivative will
|
|
be constructed, allowing to compute higher order derivative
|
|
products. Defaults to ``False``.
|
|
inputs (sequence of Tensor): Inputs w.r.t. which the gradient will be
|
|
accumulated into ``.grad``. All other Tensors will be ignored. If not
|
|
provided, the gradient is accumulated into all the leaf Tensors that were
|
|
used to compute the attr::tensors.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(
|
|
Tensor.backward,
|
|
(self,),
|
|
self,
|
|
gradient=gradient,
|
|
retain_graph=retain_graph,
|
|
create_graph=create_graph,
|
|
inputs=inputs)
|
|
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
|
|
|
|
def register_hook(self, hook):
|
|
r"""Registers a backward hook.
|
|
|
|
The hook will be called every time a gradient with respect to the
|
|
Tensor is computed. The hook should have the following signature::
|
|
|
|
hook(grad) -> Tensor or None
|
|
|
|
|
|
The hook should not modify its argument, but it can optionally return
|
|
a new gradient which will be used in place of :attr:`grad`.
|
|
|
|
This function returns a handle with a method ``handle.remove()``
|
|
that removes the hook from the module.
|
|
|
|
Example::
|
|
|
|
>>> v = torch.tensor([0., 0., 0.], requires_grad=True)
|
|
>>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
|
|
>>> v.backward(torch.tensor([1., 2., 3.]))
|
|
>>> v.grad
|
|
|
|
2
|
|
4
|
|
6
|
|
[torch.FloatTensor of size (3,)]
|
|
|
|
>>> h.remove() # removes the hook
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.register_hook, (self,), self, hook)
|
|
if not self.requires_grad:
|
|
raise RuntimeError("cannot register a hook on a tensor that "
|
|
"doesn't require gradient")
|
|
if self._backward_hooks is None:
|
|
self._backward_hooks = OrderedDict()
|
|
if self.grad_fn is not None:
|
|
self.grad_fn._register_hook_dict(self)
|
|
handle = hooks.RemovableHandle(self._backward_hooks)
|
|
self._backward_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
def reinforce(self, reward):
|
|
def trim(str):
|
|
return '\n'.join([line.strip() for line in str.split('\n')])
|
|
|
|
raise RuntimeError(trim(r"""reinforce() was removed.
|
|
Use torch.distributions instead.
|
|
See https://pytorch.org/docs/master/distributions.html
|
|
|
|
Instead of:
|
|
|
|
probs = policy_network(state)
|
|
action = probs.multinomial()
|
|
next_state, reward = env.step(action)
|
|
action.reinforce(reward)
|
|
action.backward()
|
|
|
|
Use:
|
|
|
|
probs = policy_network(state)
|
|
# NOTE: categorical is equivalent to what used to be called multinomial
|
|
m = torch.distributions.Categorical(probs)
|
|
action = m.sample()
|
|
next_state, reward = env.step(action)
|
|
loss = -m.log_prob(action) * reward
|
|
loss.backward()
|
|
"""))
|
|
|
|
detach = _C._add_docstr(_C._TensorBase.detach, r"""
|
|
Returns a new Tensor, detached from the current graph.
|
|
|
|
The result will never require gradient.
|
|
|
|
This method also affects forward mode AD gradients and the result will never
|
|
have forward mode AD gradients.
|
|
|
|
.. note::
|
|
|
|
Returned Tensor shares the same storage with the original one.
|
|
In-place modifications on either of them will be seen, and may trigger
|
|
errors in correctness checks.
|
|
IMPORTANT NOTE: Previously, in-place size / stride / storage changes
|
|
(such as `resize_` / `resize_as_` / `set_` / `transpose_`) to the returned tensor
|
|
also update the original tensor. Now, these in-place changes will not update the
|
|
original tensor anymore, and will instead trigger an error.
|
|
For sparse tensors:
|
|
In-place indices / values changes (such as `zero_` / `copy_` / `add_`) to the
|
|
returned tensor will not update the original tensor anymore, and will instead
|
|
trigger an error.
|
|
""")
|
|
|
|
detach_ = _C._add_docstr(_C._TensorBase.detach_, r"""
|
|
Detaches the Tensor from the graph that created it, making it a leaf.
|
|
Views cannot be detached in-place.
|
|
|
|
This method also affects forward mode AD gradients and the result will never
|
|
have forward mode AD gradients.
|
|
""")
|
|
|
|
def is_shared(self):
|
|
r"""Checks if tensor is in shared memory.
|
|
|
|
This is always ``True`` for CUDA tensors.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.is_shared, (self,), self)
|
|
return self.storage().is_shared()
|
|
|
|
def share_memory_(self):
|
|
r"""Moves the underlying storage to shared memory.
|
|
|
|
This is a no-op if the underlying storage is already in shared memory
|
|
and for CUDA tensors. Tensors in shared memory cannot be resized.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.share_memory_, (self,), self)
|
|
self.storage().share_memory_()
|
|
return self
|
|
|
|
def __reversed__(self):
|
|
r"""Reverses the tensor along dimension 0."""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__reversed__, (self,), self)
|
|
if self.dim() == 0:
|
|
return self
|
|
else:
|
|
return self.flip(0)
|
|
|
|
def norm(self, p="fro", dim=None, keepdim=False, dtype=None):
|
|
r"""See :func:`torch.norm`"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype)
|
|
return torch.norm(self, p, dim, keepdim, dtype=dtype)
|
|
|
|
def lu(self, pivot=True, get_infos=False):
|
|
r"""See :func:`torch.lu`"""
|
|
# If get_infos is True, then we don't need to check for errors and vice versa
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos)
|
|
|
|
LU, pivots, infos = torch._lu_with_info(self, pivot=pivot, check_errors=(not get_infos))
|
|
if get_infos:
|
|
return LU, pivots, infos
|
|
else:
|
|
return LU, pivots
|
|
|
|
def stft(self, n_fft: int, hop_length: Optional[int] = None,
|
|
win_length: Optional[int] = None, window: 'Optional[Tensor]' = None,
|
|
center: bool = True, pad_mode: str = 'reflect', normalized: bool = False,
|
|
onesided: Optional[bool] = None, return_complex: Optional[bool] = None):
|
|
r"""See :func:`torch.stft`
|
|
|
|
.. warning::
|
|
This function changed signature at version 0.4.1. Calling with
|
|
the previous signature may cause error or return incorrect result.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(
|
|
Tensor.stft, (self,), self, n_fft, hop_length=hop_length,
|
|
win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized,
|
|
onesided=onesided, return_complex=return_complex
|
|
)
|
|
return torch.stft(self, n_fft, hop_length, win_length, window, center,
|
|
pad_mode, normalized, onesided, return_complex=return_complex)
|
|
|
|
def istft(self, n_fft: int, hop_length: Optional[int] = None,
|
|
win_length: Optional[int] = None, window: 'Optional[Tensor]' = None,
|
|
center: bool = True, normalized: bool = False,
|
|
onesided: Optional[bool] = None, length: Optional[int] = None,
|
|
return_complex: bool = False):
|
|
r"""See :func:`torch.istft`"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(
|
|
Tensor.istft, (self,), self, n_fft, hop_length=hop_length, win_length=win_length,
|
|
window=window, center=center, normalized=normalized, onesided=onesided, length=length,
|
|
return_complex=return_complex
|
|
)
|
|
return torch.istft(self, n_fft, hop_length, win_length, window, center,
|
|
normalized, onesided, length, return_complex=return_complex)
|
|
|
|
def resize(self, *sizes):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.resize, (self,), self, *sizes)
|
|
warnings.warn("non-inplace resize is deprecated")
|
|
from torch.autograd._functions import Resize
|
|
return Resize.apply(self, sizes)
|
|
|
|
def resize_as(self, tensor):
|
|
if has_torch_function_variadic(self, tensor):
|
|
return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor)
|
|
warnings.warn("non-inplace resize_as is deprecated")
|
|
from torch.autograd._functions import Resize
|
|
return Resize.apply(self, tensor.size())
|
|
|
|
def split(self, split_size, dim=0):
|
|
r"""See :func:`torch.split`
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.split, (self,), self, split_size, dim=dim)
|
|
if isinstance(split_size, int):
|
|
return super(Tensor, self).split(split_size, dim)
|
|
elif isinstance(split_size, Tensor):
|
|
try:
|
|
split_size = int(split_size)
|
|
return super(Tensor, self).split(split_size, dim)
|
|
except ValueError:
|
|
return super(Tensor, self).split_with_sizes(split_size, dim)
|
|
else:
|
|
return super(Tensor, self).split_with_sizes(split_size, dim)
|
|
|
|
def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None):
|
|
r"""Returns the unique elements of the input tensor.
|
|
|
|
See :func:`torch.unique`
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(
|
|
Tensor.unique, (self,), self, sorted=sorted, return_inverse=return_inverse,
|
|
return_counts=return_counts, dim=dim
|
|
)
|
|
return torch.unique(self, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
|
|
|
|
def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None):
|
|
r"""Eliminates all but the first element from every consecutive group of equivalent elements.
|
|
|
|
See :func:`torch.unique_consecutive`
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(
|
|
Tensor.unique_consecutive, (self,), self, return_inverse=return_inverse,
|
|
return_counts=return_counts, dim=dim
|
|
)
|
|
return torch.unique_consecutive(self, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rsub__(self, other):
|
|
return _C._VariableFunctions.rsub(self, other)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rdiv__(self, other):
|
|
return self.reciprocal() * other
|
|
|
|
__rtruediv__ = __rdiv__
|
|
__itruediv__ = _C._TensorBase.__idiv__
|
|
|
|
__pow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(_C._TensorBase.pow)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rmod__(self, other):
|
|
return torch.remainder(other, self)
|
|
|
|
def __format__(self, format_spec):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__format__, (self,), self, format_spec)
|
|
if self.dim() == 0 and not self.is_meta:
|
|
return self.item().__format__(format_spec)
|
|
return object.__format__(self, format_spec)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __ipow__(self, other): # type: ignore[misc]
|
|
return NotImplemented
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rpow__(self, other):
|
|
dtype = torch.result_type(other, self)
|
|
return torch.tensor(other, dtype=dtype, device=self.device) ** self
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __floordiv__(self, other):
|
|
warnings.warn("__floordiv__ is deprecated, and its behavior will change in a future version of pytorch. "
|
|
"It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). "
|
|
"This results in incorrect rounding for negative values. "
|
|
"To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), "
|
|
"or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3)
|
|
return torch.div(self, other, rounding_mode='trunc')
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rfloordiv__(self, other):
|
|
warnings.warn("__rfloordiv__ is deprecated, and its behavior will change in a future version of pytorch. "
|
|
"It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). "
|
|
"This results in incorrect rounding for negative values. "
|
|
"To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), "
|
|
"or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3)
|
|
return torch.div(other, self, rounding_mode='trunc')
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rlshift__(self, other):
|
|
return torch.bitwise_left_shift(other, self)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rrshift__(self, other):
|
|
return torch.bitwise_right_shift(other, self)
|
|
|
|
@_handle_torch_function_and_wrap_type_error_to_not_implemented
|
|
def __rmatmul__(self, other):
|
|
return torch.matmul(other, self)
|
|
|
|
__pos__ = _C._TensorBase.positive
|
|
__neg__ = _C._TensorBase.neg
|
|
__abs__ = _C._TensorBase.abs
|
|
|
|
def __len__(self):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__len__, (self,), self)
|
|
if self.dim() == 0:
|
|
raise TypeError("len() of a 0-d tensor")
|
|
if torch._C._get_tracing_state():
|
|
warnings.warn('Using len to get tensor shape might cause the trace to be incorrect. '
|
|
'Recommended usage would be tensor.shape[0]. '
|
|
'Passing a tensor of different shape might lead to errors or silently give '
|
|
'incorrect results.', category=torch.jit.TracerWarning, stacklevel=2)
|
|
return self.shape[0]
|
|
|
|
def __iter__(self):
|
|
# NB: we use 'imap' and not 'map' here, so that in Python 2 we get a
|
|
# generator and don't eagerly perform all the indexes. This could
|
|
# save us work, and also helps keep trace ordering deterministic
|
|
# (e.g., if you zip(*hiddens), the eager map will force all the
|
|
# indexes of hiddens[0] before hiddens[1], while the generator
|
|
# map will interleave them.)
|
|
# NB: We have intentionally skipped __torch_function__ dispatch here.
|
|
# See gh-54457
|
|
if self.dim() == 0:
|
|
raise TypeError('iteration over a 0-d tensor')
|
|
if torch._C._get_tracing_state():
|
|
warnings.warn('Iterating over a tensor might cause the trace to be incorrect. '
|
|
'Passing a tensor of different shape won\'t change the number of '
|
|
'iterations executed (and might lead to errors or silently give '
|
|
'incorrect results).', category=torch.jit.TracerWarning, stacklevel=2)
|
|
return iter(self.unbind(0))
|
|
|
|
def __hash__(self):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__hash__, (self,), self)
|
|
return id(self)
|
|
|
|
def __dir__(self):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__dir__, (self,), self)
|
|
tensor_methods = dir(self.__class__)
|
|
tensor_methods.remove('volatile') # deprecated
|
|
attrs = list(self.__dict__.keys())
|
|
keys = tensor_methods + attrs
|
|
|
|
# property only available dense, cuda tensors
|
|
if (not self.is_cuda) or self.is_sparse:
|
|
keys.remove("__cuda_array_interface__")
|
|
|
|
return sorted(keys)
|
|
|
|
# Numpy array interface, to support `numpy.asarray(tensor) -> ndarray`
|
|
__array_priority__ = 1000 # prefer Tensor ops over numpy ones
|
|
|
|
def __array__(self, dtype=None):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype)
|
|
if dtype is None:
|
|
return self.numpy()
|
|
else:
|
|
return self.numpy().astype(dtype, copy=False)
|
|
|
|
# Wrap Numpy array again in a suitable tensor when done, to support e.g.
|
|
# `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor`
|
|
def __array_wrap__(self, array):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__array_wrap__, (self,), self, array=array)
|
|
if array.dtype == bool:
|
|
# Workaround, torch has no built-in bool tensor
|
|
array = array.astype('uint8')
|
|
return torch.from_numpy(array)
|
|
|
|
def __contains__(self, element):
|
|
r"""Check if `element` is present in tensor
|
|
|
|
Args:
|
|
element (Tensor or scalar): element to be checked
|
|
for presence in current tensor"
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__contains__, (self,), self, element)
|
|
if isinstance(element, (torch.Tensor, Number)):
|
|
# type hint doesn't understand the __contains__ result array
|
|
return (element == self).any().item() # type: ignore[union-attr]
|
|
|
|
raise RuntimeError(
|
|
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a %s." %
|
|
type(element)
|
|
)
|
|
|
|
@property
|
|
def __cuda_array_interface__(self):
|
|
"""Array view description for cuda tensors.
|
|
|
|
See:
|
|
https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
# TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185
|
|
return handle_torch_function(Tensor.__cuda_array_interface__.__get__, (self,), self) # type: ignore[attr-defined]
|
|
|
|
# raise AttributeError for unsupported tensors, so that
|
|
# hasattr(cpu_tensor, "__cuda_array_interface__") is False.
|
|
if not self.is_cuda:
|
|
raise AttributeError(
|
|
"Can't get __cuda_array_interface__ on non-CUDA tensor type: %s "
|
|
"If CUDA data is required use tensor.cuda() to copy tensor to device memory." %
|
|
self.type()
|
|
)
|
|
|
|
if self.is_sparse:
|
|
raise AttributeError(
|
|
"Can't get __cuda_array_interface__ on sparse type: %s "
|
|
"Use Tensor.to_dense() to convert to a dense tensor first." %
|
|
self.type()
|
|
)
|
|
|
|
# RuntimeError, matching tensor.__array__() behavior.
|
|
if self.requires_grad:
|
|
raise RuntimeError(
|
|
"Can't get __cuda_array_interface__ on Variable that requires grad. "
|
|
"If gradients aren't required, use var.detach() to get Variable that doesn't require grad."
|
|
)
|
|
|
|
# CUDA devices are little-endian and tensors are stored in native byte
|
|
# order. 1-byte entries are endian-agnostic.
|
|
typestr = {
|
|
torch.complex64: "<c8",
|
|
torch.complex128: "<c16",
|
|
torch.float16: "<f2",
|
|
torch.float32: "<f4",
|
|
torch.float64: "<f8",
|
|
torch.uint8: "|u1",
|
|
torch.int8: "|i1",
|
|
torch.int16: "<i2",
|
|
torch.int32: "<i4",
|
|
torch.int64: "<i8",
|
|
}[self.dtype]
|
|
|
|
itemsize = self.storage().element_size()
|
|
|
|
shape = tuple(self.shape)
|
|
if self.is_contiguous():
|
|
# __cuda_array_interface__ v2 requires the strides to be omitted
|
|
# (either not set or set to None) for C-contiguous arrays.
|
|
strides = None
|
|
else:
|
|
strides = tuple(s * itemsize for s in self.stride())
|
|
data_ptr = self.data_ptr() if self.numel() > 0 else 0
|
|
data = (data_ptr, False) # read-only is false
|
|
|
|
return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2)
|
|
|
|
def storage_type(self):
|
|
r"""storage_type() -> type
|
|
|
|
Returns the type of the underlying storage.
|
|
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.storage_type, (self,), self)
|
|
|
|
return self.storage()._get_legacy_storage_class()
|
|
|
|
def refine_names(self, *names):
|
|
r"""Refines the dimension names of :attr:`self` according to :attr:`names`.
|
|
|
|
Refining is a special case of renaming that "lifts" unnamed dimensions.
|
|
A ``None`` dim can be refined to have any name; a named dim can only be
|
|
refined to have the same name.
|
|
|
|
Because named tensors can coexist with unnamed tensors, refining names
|
|
gives a nice way to write named-tensor-aware code that works with both
|
|
named and unnamed tensors.
|
|
|
|
:attr:`names` may contain up to one Ellipsis (``...``).
|
|
The Ellipsis is expanded greedily; it is expanded in-place to fill
|
|
:attr:`names` to the same length as ``self.dim()`` using names from the
|
|
corresponding indices of ``self.names``.
|
|
|
|
Python 2 does not support Ellipsis but one may use a string literal
|
|
instead (``'...'``).
|
|
|
|
Args:
|
|
names (iterable of str): The desired names of the output tensor. May
|
|
contain up to one Ellipsis.
|
|
|
|
Examples::
|
|
|
|
>>> imgs = torch.randn(32, 3, 128, 128)
|
|
>>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W')
|
|
>>> named_imgs.names
|
|
('N', 'C', 'H', 'W')
|
|
|
|
>>> tensor = torch.randn(2, 3, 5, 7, 11)
|
|
>>> tensor = tensor.refine_names('A', ..., 'B', 'C')
|
|
>>> tensor.names
|
|
('A', None, None, 'B', 'C')
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.refine_names, (self,), self, *names)
|
|
names = resolve_ellipsis(names, self.names, 'refine_names')
|
|
return super(Tensor, self).refine_names(names)
|
|
|
|
def align_to(self, *names):
|
|
r"""Permutes the dimensions of the :attr:`self` tensor to match the order
|
|
specified in :attr:`names`, adding size-one dims for any new names.
|
|
|
|
All of the dims of :attr:`self` must be named in order to use this method.
|
|
The resulting tensor is a view on the original tensor.
|
|
|
|
All dimension names of :attr:`self` must be present in :attr:`names`.
|
|
:attr:`names` may contain additional names that are not in ``self.names``;
|
|
the output tensor has a size-one dimension for each of those new names.
|
|
|
|
:attr:`names` may contain up to one Ellipsis (``...``).
|
|
The Ellipsis is expanded to be equal to all dimension names of :attr:`self`
|
|
that are not mentioned in :attr:`names`, in the order that they appear
|
|
in :attr:`self`.
|
|
|
|
Python 2 does not support Ellipsis but one may use a string literal
|
|
instead (``'...'``).
|
|
|
|
Args:
|
|
names (iterable of str): The desired dimension ordering of the
|
|
output tensor. May contain up to one Ellipsis that is expanded
|
|
to all unmentioned dim names of :attr:`self`.
|
|
|
|
Examples::
|
|
|
|
>>> tensor = torch.randn(2, 2, 2, 2, 2, 2)
|
|
>>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F')
|
|
|
|
# Move the F and E dims to the front while keeping the rest in order
|
|
>>> named_tensor.align_to('F', 'E', ...)
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.align_to, (self,), self, *names)
|
|
ellipsis_idx = single_ellipsis_index(names, 'align_to')
|
|
if ellipsis_idx is None:
|
|
return super(Tensor, self).align_to(names)
|
|
return super(Tensor, self).align_to(
|
|
[name for name in names if not is_ellipsis(name)],
|
|
ellipsis_idx)
|
|
|
|
def unflatten(self, dim, sizes):
|
|
r"""Expands the dimension :attr:`dim` of the :attr:`self` tensor over multiple dimensions
|
|
of sizes given by :attr:`sizes`.
|
|
|
|
* :attr:`sizes` is the new shape of the unflattened dimension and it can be a `Tuple[int]` as well
|
|
as `torch.Size` if :attr:`self` is a `Tensor`, or `namedshape` (Tuple[(name: str, size: int)])
|
|
if :attr:`self` is a `NamedTensor`. The total number of elements in sizes must match the number
|
|
of elements in the original dim being unflattened.
|
|
|
|
Args:
|
|
dim (Union[int, str]): Dimension to unflatten
|
|
sizes (Union[Tuple[int] or torch.Size, Tuple[Tuple[str, int]]]): New shape of the unflattened dimension
|
|
|
|
Examples:
|
|
>>> torch.randn(3, 4, 1).unflatten(1, (2, 2)).shape
|
|
torch.Size([3, 2, 2, 1])
|
|
>>> torch.randn(3, 4, 1).unflatten(1, (-1, 2)).shape # the size -1 is inferred from the size of dimension 1
|
|
torch.Size([3, 2, 2, 1])
|
|
>>> torch.randn(2, 4, names=('A', 'B')).unflatten('B', (('B1', 2), ('B2', 2)))
|
|
tensor([[[-1.1772, 0.0180],
|
|
[ 0.2412, 0.1431]],
|
|
[[-1.1819, -0.8899],
|
|
[ 1.5813, 0.2274]]], names=('A', 'B1', 'B2'))
|
|
>>> torch.randn(2, names=('A',)).unflatten('A', (('B1', -1), ('B2', 1)))
|
|
tensor([[-0.8591],
|
|
[ 0.3100]], names=('B1', 'B2'))
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes)
|
|
|
|
if not sizes:
|
|
raise RuntimeError("unflatten: sizes must be non-empty")
|
|
|
|
names = None
|
|
if isinstance(sizes, OrderedDict) or (isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list))):
|
|
names, sizes = unzip_namedshape(sizes)
|
|
return super(Tensor, self).unflatten(dim, sizes, names)
|
|
|
|
|
|
def rename_(self, *names, **rename_map):
|
|
"""In-place version of :meth:`~Tensor.rename`."""
|
|
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.rename_, (self,), self, *names, **rename_map)
|
|
|
|
# Note [rename_ / rename API]
|
|
# The Python API for these is different from the C++ API. In Python:
|
|
# 1) tensor.rename(*names) takes a vararglist of names
|
|
# 2) tensor.rename(**rename_map) takes a map of names to rename.
|
|
# C++ is static, making it difficult to implement similar behavior.
|
|
return update_names(self, names, rename_map, inplace=True)
|
|
|
|
def rename(self, *names, **rename_map):
|
|
"""Renames dimension names of :attr:`self`.
|
|
|
|
There are two main usages:
|
|
|
|
``self.rename(**rename_map)`` returns a view on tensor that has dims
|
|
renamed as specified in the mapping :attr:`rename_map`.
|
|
|
|
``self.rename(*names)`` returns a view on tensor, renaming all
|
|
dimensions positionally using :attr:`names`.
|
|
Use ``self.rename(None)`` to drop names on a tensor.
|
|
|
|
One cannot specify both positional args :attr:`names` and keyword args
|
|
:attr:`rename_map`.
|
|
|
|
Examples::
|
|
|
|
>>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
|
|
>>> renamed_imgs = imgs.rename(N='batch', C='channels')
|
|
>>> renamed_imgs.names
|
|
('batch', 'channels', 'H', 'W')
|
|
|
|
>>> renamed_imgs = imgs.rename(None)
|
|
>>> renamed_imgs.names
|
|
(None,)
|
|
|
|
>>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width')
|
|
>>> renamed_imgs.names
|
|
('batch', 'channel', 'height', 'width')
|
|
|
|
.. warning::
|
|
The named tensor API is experimental and subject to change.
|
|
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.rename, (self,), self, *names, **rename_map)
|
|
|
|
# See Note [rename_ / rename API]
|
|
return update_names(self, names, rename_map, inplace=False)
|
|
|
|
def to_sparse_coo(self):
|
|
""" Convert a tensor to :ref:`coordinate format <sparse-coo-docs>`.
|
|
|
|
Examples::
|
|
|
|
>>> dense = torch.randn(5, 5)
|
|
>>> sparse = dense.to_sparse_coo()
|
|
>>> sparse._nnz()
|
|
25
|
|
|
|
"""
|
|
return self.to_sparse()
|
|
|
|
def _update_names(self, names, inplace):
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor._update_names, (self,), self, names, inplace)
|
|
|
|
# See Note [rename_ / rename API]
|
|
if inplace:
|
|
return super(Tensor, self).rename_(names)
|
|
else:
|
|
return super(Tensor, self).rename(names)
|
|
|
|
@classmethod
|
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
"""
|
|
This __torch_function__ implementation wraps subclasses such that
|
|
methods called on subclasses return a subclass instance instead of
|
|
a ``torch.Tensor`` instance.
|
|
|
|
One corollary to this is that you need coverage for torch.Tensor
|
|
methods if implementing __torch_function__ for subclasses.
|
|
|
|
We recommend always calling ``super().__torch_function__`` as the base
|
|
case when doing the above.
|
|
|
|
While not mandatory, we recommend making `__torch_function__` a classmethod.
|
|
"""
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
if not all(issubclass(cls, t) for t in types):
|
|
return NotImplemented
|
|
|
|
with _C.DisableTorchFunction():
|
|
ret = func(*args, **kwargs)
|
|
if func in get_default_nowrap_functions():
|
|
return ret
|
|
else:
|
|
return _convert(ret, cls)
|
|
|
|
__torch_dispatch__ = _C._disabled_torch_dispatch_impl
|
|
|
|
def __dlpack__(self, stream=None):
|
|
"""
|
|
Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_
|
|
of the current tensor to be exported to other libraries.
|
|
|
|
This function will be called from the `from_dlpack` method
|
|
of the library that will consume the capsule. `from_dlpack` passes the current
|
|
stream to this method as part of the specification.
|
|
|
|
Args:
|
|
stream (integer or None): An optional Python integer representing a
|
|
pointer to a CUDA stream. The current stream is synchronized with
|
|
this stream before the capsule is created, and since the capsule
|
|
shares its storage with the tensor this make it safe to access from
|
|
both streams. If None or -1 is passed then no synchronization is performed.
|
|
"""
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__dlpack__, (self,), self, stream)
|
|
|
|
# DLPack capsules can't capture all of PyTorch's semantics,
|
|
# so we prohibit exporting tensors that would lose their properties like
|
|
# requires_grad and having the conjugate bit set.
|
|
if self.requires_grad:
|
|
raise RuntimeError('Can\'t export tensors that require gradient, use tensor.detach()')
|
|
if self.is_conj():
|
|
raise RuntimeError('Can\'t export tensors with the conjugate bit set')
|
|
if self.layout != torch.strided:
|
|
raise RuntimeError('Can\'t export tensors with layout other than torch.strided')
|
|
|
|
if stream is not None and type(stream) is not int:
|
|
# Stream pointers in CUDA/ROCm are uniquely numbered and can
|
|
# be retrieved from their integer value.
|
|
raise TypeError('stream must be ``int`` or ``none``')
|
|
elif stream is not None and stream != -1:
|
|
if self.device.type == 'cuda':
|
|
stream = torch.cuda.ExternalStream(stream)
|
|
# Only synchronize on different streams
|
|
if stream != torch.cuda.current_stream:
|
|
event = torch.cuda.Event()
|
|
event.record(torch.cuda.current_stream())
|
|
stream.wait_event(event)
|
|
return torch.to_dlpack(self)
|
|
|
|
def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]:
|
|
# Avoid circular import
|
|
from torch.utils.dlpack import DLDeviceType
|
|
if has_torch_function_unary(self):
|
|
return handle_torch_function(Tensor.__dlpack_device__, (self,), self)
|
|
idx = self.device.index if self.device.index is not None else 0
|
|
if self.device.type == 'cuda' and torch.version.hip is not None:
|
|
device_type = DLDeviceType.kDLROCM
|
|
elif self.device.type == 'cpu' and self.is_pinned():
|
|
device_type = DLDeviceType.kDLCPUPinned
|
|
elif self.device.type == 'cuda':
|
|
device_type = DLDeviceType.kDLGPU
|
|
elif self.device.type == 'cpu':
|
|
device_type = DLDeviceType.kDLCPU
|
|
else:
|
|
raise ValueError('Unknown device type {} for Dlpack'.format(self.device.type))
|
|
return (device_type, idx)
|
|
|
|
__module__ = 'torch'
|
|
|
|
def _convert(ret, cls):
|
|
if cls is Tensor:
|
|
return ret
|
|
|
|
if isinstance(ret, Tensor) and not isinstance(ret, cls):
|
|
ret = ret.as_subclass(cls)
|
|
|
|
if isinstance(ret, (tuple, list)):
|
|
# Also handles things like namedtuples
|
|
ret = type(ret)(_convert(r, cls) for r in ret)
|
|
|
|
return ret
|