Files
pytorch/torch/_dynamo/variables/torch.py
Bin Bao 2c1efe7472 Enable some PyTorch core tests with inductor (#87490)
Summary:
1) Graph break on torch.random.set_rng_state since it blocks running
inductor core tests;
2) Add several inductor-specific skips;
3) Enable several core tests for inductor CI;

cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87490
Approved by: https://github.com/eellison
2022-10-26 18:58:33 +00:00

700 lines
26 KiB
Python

import logging
import re
import types
from typing import Dict, List
import numpy
import torch._C
import torch.nn
import torch.onnx.operators
from .. import config, variables
from ..allowed_functions import torch_get_name
from ..exc import unimplemented
from ..source import GetItemSource, NNModuleSource
from ..utils import (
check_constant_args,
check_unspec_python_args,
istype,
product,
proxy_args_kwargs,
specialize_args_kwargs,
tensortype_to_dtype,
)
from .base import VariableTracker
from .lists import ListVariable, TupleVariable
from .misc import AutocastModeVariable, ProfilerContextWrapperVariable
from .nn_module import NNModuleVariable
from .tensor import TensorWithTFOverrideVariable
log = logging.getLogger(__name__)
# TODO(voz): Maybe rename these later
tensor_dunder_fns = [
torch.Tensor.__rmatmul__,
torch.Tensor.__rmod__,
torch.Tensor.__rpow__,
torch.Tensor.__rsub__,
torch._C._TensorBase.__radd__,
torch._C._TensorBase.__rmul__,
torch._C._TensorBase.__ror__,
torch._C._TensorBase.__rxor__,
torch._C._TensorBase.__rand__,
]
torch_special_class_types = (torch._C.Generator,)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = [
torch.onnx.operators.shape_as_tensor,
torch._shape_as_tensor,
]
# TODO(voz): perhaps a decorator? This is rather readable for now tho, and not a public API.
def remap_as_fn___radd__(*args):
return torch._C._TensorBase.__radd__(*args)
def remap_as_fn___rmul__(*args):
return torch._C._TensorBase.__rmul__(*args)
def remap_as_fn___ror__(*args):
return torch._C._TensorBase.__ror__(*args)
def remap_as_fn___rxor__(*args):
return torch._C._TensorBase.__rxor__(*args)
def remap_as_fn___rand__(*args):
return torch._C._TensorBase.__rand__(*args)
tensor_dunder_fns_remap = {
torch._C._TensorBase.__radd__: remap_as_fn___radd__,
torch._C._TensorBase.__rmul__: remap_as_fn___rmul__,
torch._C._TensorBase.__ror__: remap_as_fn___ror__,
torch._C._TensorBase.__rxor__: remap_as_fn___rxor__,
torch._C._TensorBase.__rand__: remap_as_fn___rand__,
}
try:
# Wed need to monkeypatch transformers here, sadly.
# TODO(voz): Upstream to transformers lib
import transformers
def _dynamo_overriden_transformers_eq(self, other):
if not hasattr(other, "__dict__"):
return False
return self.__dict__ == other.__dict__
transformers.configuration_utils.PretrainedConfig.__eq__ = (
_dynamo_overriden_transformers_eq
)
except ImportError:
pass
class TorchVariable(VariableTracker):
"""Points to a module or method in torch.*"""
def __init__(self, value, **kwargs):
super(TorchVariable, self).__init__(**kwargs)
if value in tensor_dunder_fns_remap:
value = tensor_dunder_fns_remap[value]
self.value = value
# the remainder of this is just optional debug checks
try:
self_should_be_none = getattr(self.value, "__self__", None)
except RuntimeError as e:
assert "No such operator" in str(e), str(e)
self_should_be_none = None
# assert "_ntuple.<locals>.parse" not in str(value)
if self_should_be_none is None:
pass
elif isinstance(self_should_be_none, types.ModuleType):
# weird ones like torch.nn.functional.avg_pool2d have __self__
name = self_should_be_none.__name__
assert re.match(r"^(torch|math)([.]|$)", name), f"__self__ set to {name}"
elif isinstance(
self_should_be_none, type(torch._C._get_tracing_state.__self__)
):
# some _C functions have __self__ as a null capsule
pass
elif isinstance(self_should_be_none, torch_special_class_types):
pass
else:
raise AssertionError(f"{value} found with __self__ set")
def __repr__(self):
return f"TorchVariable({self.value})"
def unique_var_name(self):
name = torch_get_name(self.value, f"allowed_fn_{id(self.value)}")
return "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
def reconstruct(self, codegen):
return codegen.setup_globally_cached(self.unique_var_name(), self.value)
def as_proxy(self):
return self.value
def python_type(self):
if isinstance(self.value, (torch.Tensor, torch.nn.Module)):
return type(self.value)
return super().python_type()
def as_python_constant(self):
return self.value
def can_constant_fold_through(self):
if self.value in (
torch._assert,
torch.device,
torch.finfo,
torch.iinfo,
torch.is_floating_point,
torch.is_tensor,
torch.overrides.is_tensor_like,
):
return True
return getattr(self.value, "__module__", None) == "math"
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import ConstantVariable, GradModeVariable, TensorVariable
constant_args = check_constant_args(args, kwargs)
unspec_python_args = check_unspec_python_args(args, kwargs)
options = VariableTracker.propagate(self, args, kwargs.values())
if self.value in config.constant_functions:
assert not args and not kwargs
return ConstantVariable(config.constant_functions[self.value], **options)
elif self.can_constant_fold_through() and (constant_args or unspec_python_args):
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
# constant fold
return ConstantVariable(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
**options,
)
elif istype(self.value, type) and issubclass(self.value, torch.nn.Module):
if self.value is torch.nn.Softmax:
return self._call_softmax(tx, args, kwargs, options)
if self.value is torch.nn.CrossEntropyLoss:
return self._call_cross_entropy_loss(tx, args, kwargs, options)
else:
unimplemented(f"construct nn.Module: {self.value.__name__}")
elif (
self.value
in (
torch.is_tensor,
torch.is_floating_point,
torch.is_complex,
torch.overrides.is_tensor_like,
torch.is_complex,
)
and isinstance(args[0], TensorVariable)
and args[0].dtype is not None
):
if self.value in (torch.is_tensor, torch.overrides.is_tensor_like):
return ConstantVariable(True, **options)
elif self.value is torch.is_floating_point:
return ConstantVariable(args[0].dtype.is_floating_point, **options)
elif self.value is torch.is_complex:
return ConstantVariable(args[0].dtype.is_complex, **options)
else:
raise AssertionError()
elif (
self.value is torch.numel
and isinstance(args[0], TensorVariable)
and args[0].size is not None
):
return ConstantVariable(product(args[0].size), **options)
elif self.value in REWRITE_OPS_TO_TENSOR_SIZE_METHOD:
assert len(args) == 1
assert isinstance(args[0], TensorVariable)
return args[0].call_method(tx, "size", [], {})
elif self.value in (
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
):
return self._call_ntuple(tx, args, kwargs, options)
elif self.value is torch.no_grad:
return GradModeVariable.create(tx, False, **options)
elif self.value is torch.enable_grad:
return GradModeVariable.create(tx, True, **options)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(tx, args[0].as_python_constant(), **options)
elif self.value is torch.is_grad_enabled:
assert not (args or kwargs)
return ConstantVariable(torch.is_grad_enabled(), **options).add_guards(
GradModeVariable._guards_singleton
)
elif not config.dynamic_shapes and self.is_dynamic_shapes(args, kwargs):
unimplemented(f"dynamic shapes: {self.value.__name__}")
elif len(args) > 0 and isinstance(args[0], TensorWithTFOverrideVariable):
# This code block implements inlining the __torch_function__
# override of a tensor.
tensor_with_tf_override = args[0]
# TODO(future PR): make this implement the full __torch_function__ API
# instead of assuming the relevant override is in the first argument.
args[0] = args[0].tensor_variable
unwrapped = TensorWithTFOverrideVariable.inline_torch_function_unwrapped(
tx,
self,
tensor_with_tf_override.orig_tensor_variable_source,
tensor_with_tf_override.subclass_torch_function__func,
tensor_with_tf_override.subclass_type,
options,
args,
kwargs,
)
# The wrapping here follows the logic in
# `torch.Tensor.__torch_function__`.
if self.value in torch.overrides.get_default_nowrap_functions():
return unwrapped
return TensorWithTFOverrideVariable(
unwrapped,
tensor_with_tf_override.orig_tensor_variable_source,
tensor_with_tf_override.subclass_torch_function__func,
tensor_with_tf_override.subclass_type,
)
elif self.value is torch.amp.autocast_mode.autocast:
return AutocastModeVariable.create(tx, target_values=args, kwargs=kwargs)
elif self.value in (
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
log.warning("Profiler will be ignored")
return ProfilerContextWrapperVariable(**options)
elif self.value is torch.jit.annotate:
assert len(args) == 2
return args[1]
if (
self.value.__name__ == "get_state"
and hasattr(self.value, "__self__")
and isinstance(self.value.__self__, torch._C.Generator)
):
def get_state_from_generator():
return self.value()
return TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
get_state_from_generator,
*proxy_args_kwargs(args, kwargs),
current_tx=tx,
),
example_value=self.value(),
**options,
)
if (
self.value.__name__ == "set_state"
and hasattr(self.value, "__self__")
and isinstance(self.value.__self__, torch._C.Generator)
) or self.value == torch.random.set_rng_state:
assert len(args) == 1
assert isinstance(args[0], TensorVariable)
if config.fake_tensor_propagation:
unimplemented(
"TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd"
)
# In fake tensor case, this state doesn't matter, but
# it needs to be valid to not segfault. Pull a real tensor out.
# The value won't matter since we are running with fake tensors anyway, so rng doesn't matter.
# However, it is imperative to record the call_function in the graph with the true args
# (Not the fake example_value) - for the sake of graph correctness.
if self.value == torch.random.set_rng_state:
example_value = torch.random.get_rng_state()
else:
example_value = self.value.__self__.get_state()
else:
example_value = args[0].proxy.node.meta["example_value"]
self.value.__module__ = self.__module__
return TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
*proxy_args_kwargs(args, kwargs),
current_tx=tx,
),
example_value=example_value,
**options,
)
elif (
self.value == torch.numel
and len(args) == 1
and isinstance(args[0], TensorVariable)
and len(kwargs) == 0
):
# TODO(voz): This is rewritten as a call_method because
# torch.numel(x) w/ sym shapes raises a RuntimeError and x.numel() does not
return TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_method",
"numel",
*proxy_args_kwargs(args, kwargs),
current_tx=tx,
),
**options,
)
else:
# Handle sth like torch.LongTensor(list(np.int64, np.int64, ...)),
# as FX symbolic trace doesn't support numpy int/float as base types.
if (
self.value in tensortype_to_dtype
and len(args) == 1
and isinstance(args[0], ListVariable)
and args[0].is_python_constant()
):
for x in args[0].items:
if isinstance(x.value, numpy.generic):
x.value = x.value.item()
tensor_variable = TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
*proxy_args_kwargs(args, kwargs),
current_tx=tx,
),
**options,
)
if "out" in kwargs:
# out variants of torch operators like torch.sort and
# torch.sigmoid mutate the tensors in the out field. Track such
# tensors and rewrite the symbolic locals.
if isinstance(tensor_variable, TupleVariable):
assert isinstance(kwargs["out"], TupleVariable)
output_tensor_names = [
tx.find_symbolic_locals_name(x) for x in kwargs["out"].items
]
for idx, name in enumerate(output_tensor_names):
assert name in tx.symbolic_locals
tx.symbolic_locals[name] = tensor_variable.items[idx]
elif isinstance(tensor_variable, TensorVariable):
assert isinstance(kwargs["out"], TensorVariable)
name = tx.find_symbolic_locals_name(kwargs["out"])
assert name in tx.symbolic_locals
tx.symbolic_locals[name] = tensor_variable
else:
unimplemented(f"out variant of {type(kwargs['out'])}")
return tensor_variable
def is_dynamic_shapes(self, args, kwargs):
"""Check for dynamic shapes when shape specialization is enabled"""
# TODO(jansel): need to get a complete list
if self.value in (
torch.nonzero,
torch.unique,
torch.unique_consecutive,
) or self.value.__name__ in ("nms",):
return True
if self.value is torch.where and len(args) + len(kwargs) == 1:
return True
if self.value in (
torch.arange,
torch.repeat_interleave,
):
none = variables.ConstantVariable(None)
def has_non_const(it):
return not all(x.is_python_constant() for x in it)
def arange(start=none, end=none, step=none, **kwargs):
return has_non_const([start, end, step])
def repeat_interleave(input, repeats, dim=none, **kwargs):
return has_non_const([repeats])
return locals()[self.value.__name__](*args, **kwargs)
return False
def _call_softmax(self, tx, args, kwargs, options):
"""rewrite the pattern nn.Softmax(dim=-1)(x) to F.softmax(x, -1)"""
dim = args[0] if args else kwargs.get("dim", variables.ConstantVariable(None))
def fake_softmax(input):
return variables.TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.nn.functional.softmax,
*proxy_args_kwargs([input, dim], {}),
current_tx=tx,
),
**VariableTracker.propagate([self, dim, input]),
)
return variables.LambdaVariable(fake_softmax, **options)
def _call_cross_entropy_loss(self, tx, args, kwargs, options):
"""
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional loss call: input, target, optional_output
"""
from . import ConstantVariable
def normalize_args(
weight=ConstantVariable(None),
size_average=ConstantVariable(None),
ignore_index=ConstantVariable(-100),
reduce=ConstantVariable(None),
reduction=ConstantVariable("mean"),
label_smoothing=ConstantVariable(0.0),
):
return (
weight,
size_average,
ignore_index,
reduce,
reduction,
label_smoothing,
)
(
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
) = normalize_args(*args, **kwargs)
def fake_cross_entropy_loss(input, target):
return variables.TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.nn.functional.cross_entropy,
*proxy_args_kwargs(
[
input,
target,
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
],
{},
),
current_tx=tx,
),
**VariableTracker.propagate(
[
self,
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
input,
target,
]
),
)
return variables.LambdaVariable(fake_cross_entropy_loss, **options)
def _call_ntuple(self, tx, args, kwargs, options):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
**VariableTracker.propagate(self, value, args, kwargs.values()),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
**VariableTracker.propagate(self, value, args, kwargs.values()),
)
else:
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple, **options)
else:
return handle_ntuple(args[0])
class TorchPyOperator(VariableTracker):
def __init__(self, value, **kwargs):
super(TorchPyOperator, self).__init__(**kwargs)
self.value = value
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import ListVariable, TensorVariable, UserFunctionVariable
assert kwargs is None or len(kwargs) == 0, "kwargs are not supported, yet"
def unwrap_real(arg):
if isinstance(arg, TensorVariable):
return arg.get_real_value()
if isinstance(arg, UserFunctionVariable):
return arg.fn
if isinstance(arg, NNModuleVariable):
return tx.output.get_submodule(arg.module_key)
if arg.has_unpack_var_sequence(tx):
return [
unwrap_real(arg_inner) for arg_inner in arg.unpack_var_sequence(tx)
]
return arg
def make_attr(name, proxy_args=None):
node = tx.output.create_proxy(
"get_attr",
name,
tuple(proxy_args) if proxy_args else tuple(),
{},
)
return node
# Get values
u_args = [unwrap_real(arg) for arg in args]
def unwrap_proxy(arg):
try:
if isinstance(arg, TensorVariable):
return arg.as_proxy()
if isinstance(arg, NNModuleVariable):
name = arg.module_key
mod = unwrap_real(arg)
options = VariableTracker.propagate(self, args, kwargs.values())
tx.output.register_attr_or_module(
mod,
name,
name,
source=NNModuleSource(
GetItemSource(self.source, arg.module_key)
),
**options,
)
return make_attr(name)
if arg.has_unpack_var_sequence(tx):
return [
unwrap_proxy(arg_inner)
for arg_inner in arg.unpack_var_sequence(tx)
]
return arg.as_proxy()
except NotImplementedError:
return arg
def register_as_subgraph(fn, name, args):
from .. import export
gm, guards = export(fn, *args)
next_name = None
i = 0
while not next_name:
candidate = f"name_{i}"
if candidate in tx.output.nn_modules:
i += 1
else:
next_name = candidate
gm.__name__ = next_name
src = NNModuleSource(GetItemSource(self.source, next_name))
gm.torchdynamo_force_dynamic = False
tx.output.register_attr_or_module(gm, next_name, source=src)
return next_name, gm, guards
# Get args as proxies
p_args = [unwrap_proxy(arg) for arg in args]
if self.value.__name__ == "cond":
# TODO(voz): Support fake tensor dispatch for recursive
# ops - see torch/dispatch/_dispatcher.py
from .. import config
if config.fake_tensor_propagation:
unimplemented("Fake tensor mode not yet supported for cond")
assert len(p_args) == 4
assert type(args[0]) is TensorVariable # predicate
assert type(p_args[1]) is UserFunctionVariable # true_fn
assert type(p_args[2]) is UserFunctionVariable # false_fn
assert type(args[3]) is ListVariable # args
node_args = [unwrap_real(x) for x in args[3].unpack_var_sequence(tx)]
proxy_args = [unwrap_proxy(x) for x in args[3].unpack_var_sequence(tx)]
true_name, true_graph, true_guards = register_as_subgraph(
p_args[1].get_function(), "true", node_args
)
false_name, false_graph, false_guards = register_as_subgraph(
p_args[2].get_function(), "false", node_args
)
if config.enforce_cond_guards_match:
assert (
true_guards == false_guards
), "Guards for true and false path must be equal."
true_node = make_attr(true_name, proxy_args)
false_node = make_attr(false_name, proxy_args)
p_args[1] = true_node
p_args[2] = false_node
# Store the invocation as a call
return variables.TensorVariable.create(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
args=tuple(p_args),
kwargs={},
current_tx=tx,
),
example_value=self.value(*u_args),
)