mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29632 This PR is BC-breaking in the following way: Previously, C++ `torch::tensor` with a floating-point literal with no suffix (e.g. `torch::tensor(1.1)`) or a (nested) braced-init-list of floating-point literals with no suffix (e.g. `torch::tensor({{1.1, 2.2}})` produces a tensor with dtype `at::kDouble`. After this PR, it produces a tensor with dtype `torch::get_default_dtype()`, matching Python `torch.tensor` behavior. Test Plan: Imported from OSS Differential Revision: D18465819 Pulled By: yf225 fbshipit-source-id: 6834fe50335c677bc3832f2a5e9cf8d1ede9f665
158 lines
4.8 KiB
C++
158 lines
4.8 KiB
C++
#include <gtest/gtest.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch::test;
|
|
|
|
// A macro so we don't lose location information when an assertion fails.
|
|
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_TRUE( \
|
|
options.device().index() == Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(options.dtype(), (type_)); \
|
|
ASSERT_TRUE(options.layout() == (layout_))
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(tensor.scalar_type(), (type_)); \
|
|
ASSERT_TRUE(tensor.type().layout() == (layout_))
|
|
|
|
TEST(TensorOptionsTest, DefaultsToTheRightValues) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, UtilityFunctionsReturnTheRightTensorOptions) {
|
|
auto options = dtype(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = layout(kSparse);
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = device({kCUDA, 1});
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = device_index(1);
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = dtype(kByte).layout(kSparse).device(kCUDA, 2).device_index(3);
|
|
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTypes) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
options = TensorOptions({kCPU, 0});
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions("cpu:0");
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kFloat));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kByte));
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTensors) {
|
|
auto options = empty(5, kDouble).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
|
|
|
|
options = empty(5, getDeprecatedTypeProperties(Backend::SparseCPU, kByte)).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromVariables) {
|
|
auto options = torch::empty(5).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
|
|
options = torch::empty(5, at::requires_grad()).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
}
|
|
|
|
TEST(DeviceTest, ParsesCorrectlyFromString) {
|
|
Device device("cpu:0");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU, 0));
|
|
|
|
device = Device("cpu");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU));
|
|
|
|
device = Device("cuda:123");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA, 123));
|
|
|
|
device = Device("cuda");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA));
|
|
|
|
device = Device("mkldnn");
|
|
ASSERT_EQ(device, Device(DeviceType::MKLDNN));
|
|
|
|
device = Device("opengl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENGL));
|
|
|
|
device = Device("opencl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENCL));
|
|
|
|
device = Device("ideep");
|
|
ASSERT_EQ(device, Device(DeviceType::IDEEP));
|
|
|
|
device = Device("hip");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP));
|
|
|
|
device = Device("hip:321");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP, 321));
|
|
|
|
std::vector<std::string> badnesses = {
|
|
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
|
|
for (const auto& badness : badnesses) {
|
|
ASSERT_ANY_THROW({ Device d(badness); });
|
|
}
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, CanSetAndGetDefaultDtype) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
|
|
ASSERT_EQ(at::get_default_dtype(), kFloat);
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
ASSERT_EQ(at::get_default_dtype(), kInt);
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, NewTensorOptionsHasCorrectDefault) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
ASSERT_EQ(at::get_default_dtype(), kInt);
|
|
TensorOptions options;
|
|
ASSERT_EQ(options.dtype(), kInt);
|
|
}
|
|
|
|
TEST(DefaultDtypeTest, NewTensorsHaveCorrectDefaultDtype) {
|
|
AutoDefaultDtypeMode dtype_mode(kFloat);
|
|
set_default_dtype(caffe2::TypeMeta::Make<int>());
|
|
{
|
|
auto tensor = torch::ones(5);
|
|
ASSERT_EQ(tensor.dtype(), kInt);
|
|
}
|
|
set_default_dtype(caffe2::TypeMeta::Make<double>());
|
|
{
|
|
auto tensor = torch::ones(5);
|
|
ASSERT_EQ(tensor.dtype(), kDouble);
|
|
}
|
|
{
|
|
auto tensor = torch::ones(5, kFloat);
|
|
ASSERT_EQ(tensor.dtype(), kFloat);
|
|
}
|
|
}
|