Files
pytorch/torch/csrc/tensor/python_tensor.cpp
Pritam Damania 2b221a9599 Remove PyCFunction casts as much as possible. (#46227)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227

Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.

The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704

Test Plan: waitforbuildbot

Reviewed By: albanD

Differential Revision: D24269435

fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
2020-10-20 15:01:51 -07:00

394 lines
13 KiB
C++

#include <torch/csrc/tensor/python_tensor.h>
#include <structmember.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/utils/cuda_enabled.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_types.h>
#include <ATen/ATen.h>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
namespace torch { namespace tensors {
using namespace at;
using namespace torch::autograd;
struct PyTensorType {
PyTypeObject py_type;
THPDtype* dtype;
THPLayout* layout;
bool is_cuda;
char name[64];
int backend;
int scalar_type;
Backend get_backend() const {
return static_cast<Backend>(backend);
}
DispatchKey get_dispatch_key() const {
return backendToDispatchKey(static_cast<Backend>(backend));
}
ScalarType get_scalar_type() const {
return static_cast<ScalarType>(scalar_type);
}
};
static_assert(std::is_standard_layout<PyTensorType>::value, "PyTensorType must be standard layout");
// This is always an instance of VariableType
static PyTensorType* default_tensor_type;
static void py_bind_tensor_types(const std::vector<PyTensorType>& tensor_types);
static TypeError unavailable_type(const PyTensorType& type) {
return TypeError("type %s not available. Torch not compiled with CUDA enabled.", type.name);
}
static PyObject* Tensor_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) {
HANDLE_TH_ERRORS
auto& tensor_type = *((PyTensorType*)type);
if (tensor_type.is_cuda && !torch::utils::cuda_enabled()) {
throw unavailable_type(tensor_type);
}
return THPVariable_Wrap(torch::utils::legacy_tensor_ctor(tensor_type.get_dispatch_key(), tensor_type.get_scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
// TODO: Deprecate this instancecheck entirely. It's here to make
// instanceof(t, torch.FloatTensor) work, but we are not going to keep
// adding torch.QuantizedIntTensor classes for every new tensor type
// we add...
static PyObject* Tensor_instancecheck(PyObject* _self, PyObject* arg) {
HANDLE_TH_ERRORS
auto self = (PyTensorType*)_self;
if (THPVariable_Check(arg)) {
auto& var = ((THPVariable*)arg)->cdata;
// NB: This is a little unfortunate, in that if I do an isinstance check
// against torch.cuda.FloatTensor, this will immediately initialize CUDA.
// I originally thought that it would not be possible for aten_type_ to
// be nullptr if you had a tensor of some type, in which case you can
// skip initializing aten_type(), but TestAutograd.test_type_conversions
// seems to violate this property (for whatever reason.)
//
// TODO: Stop using legacyExtractDispatchKey here (probably need to build
// in instanceof checking to Tensor class itself)
if (legacyExtractDispatchKey(var.key_set()) == self->get_dispatch_key() &&
var.scalar_type() == static_cast<ScalarType>(self->scalar_type)) {
Py_RETURN_TRUE;
}
}
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
PyObject *Tensor_dtype(PyTensorType* self, void *unused) {
return torch::autograd::utils::wrap(self->dtype);
}
PyObject *Tensor_layout(PyTensorType* self, void *unused) {
return torch::autograd::utils::wrap(self->layout);
}
PyObject *Tensor_is_cuda(PyTensorType* self, void *unused) {
if (self->is_cuda) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyObject *Tensor_is_sparse(PyTensorType *self, void *unused) {
if (self->layout->layout == at::Layout::Strided) {
Py_RETURN_FALSE;
} else {
Py_RETURN_TRUE;
}
}
static struct PyMethodDef metaclass_methods[] = {
{"__instancecheck__", Tensor_instancecheck, METH_O, nullptr},
{nullptr}
};
typedef PyObject *(*getter)(PyObject *, void *);
static struct PyGetSetDef metaclass_properties[] = {
{"dtype", (getter)Tensor_dtype, nullptr, nullptr, nullptr},
{"layout", (getter)Tensor_layout, nullptr, nullptr, nullptr},
{"is_cuda", (getter)Tensor_is_cuda, nullptr, nullptr, nullptr},
{"is_sparse", (getter)Tensor_is_sparse, nullptr, nullptr, nullptr},
{nullptr}
};
static PyTypeObject metaclass = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch.tensortype", /* tp_name */
sizeof(PyTypeObject) /* tp_basicsize */
};
static void py_initialize_metaclass(PyTypeObject& metaclass) {
metaclass.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;
metaclass.tp_methods = metaclass_methods;
metaclass.tp_getset = metaclass_properties;
metaclass.tp_base = &PyType_Type;
if (PyType_Ready(&metaclass) < 0) {
throw python_error();
}
}
static PyTypeObject tensor_type_prototype = {
PyVarObject_HEAD_INIT(&metaclass, 0)
nullptr, /* tp_name */
sizeof(PyTensorType) /* tp_basicsize */
};
static void py_initialize_tensor_type(PyTypeObject& type, const char* name, PyObject* tp_dict) {
// NOTE: we don't use the typical static declaration of PyTypeObject because
// we need to initialize as many types as there are VariableType instances.
// We copy the basic object fields from a prototype definition and initialize
// the remaining fields below.
memcpy(&type, &tensor_type_prototype, sizeof(PyTypeObject));
// Subclassing from torch.<ScalarType>Tensor isn't supported.
// (Py_TPFLAGS_BASETYPE omitted). Subclassing torch.Tensor still allowed.
type.tp_flags = Py_TPFLAGS_DEFAULT;
type.tp_name = name;
type.tp_new = Tensor_new;
if (PyType_Ready(&type) < 0) {
throw python_error();
}
if (PyDict_Merge(type.tp_dict, tp_dict, 0) < 0) {
throw python_error();
}
}
static const char* get_module(Backend backend) {
switch (backend) {
case Backend::CPU: return "torch";
case Backend::CUDA: return "torch.cuda";
case Backend::SparseCPU: return "torch.sparse";
case Backend::SparseCUDA: return "torch.cuda.sparse";
default: AT_ERROR("invalid backend: ", toString(backend));
}
}
static std::string get_name(Backend backend, ScalarType scalarType) {
std::ostringstream ss;
ss << get_module(backend) << "." << toString(scalarType) << "Tensor";
return ss.str();
}
static THPObjectPtr get_storage_obj(PyTensorType* type) {
auto module_name = get_module(type->get_backend());
auto module_obj = THPObjectPtr(PyImport_ImportModule(module_name));
if (!module_obj) throw python_error();
auto storage_name = std::string(toString(type->get_scalar_type())) + "Storage";
THPObjectPtr storage(PyObject_GetAttrString(module_obj.get(), storage_name.c_str()));
if (!storage.get()) {
throw TypeError("couldn't find storage object %s", storage_name.c_str());
}
return storage;
}
static void set_type(PyTensorType& type_obj, Backend backend, ScalarType scalarType) {
// This field is lazily initialized from backend and scalar_type
type_obj.backend = static_cast<int>(backend);
type_obj.scalar_type = static_cast<int>(scalarType);
type_obj.layout = torch::getTHPLayout(layout_from_backend(backend));
type_obj.dtype = torch::getTHPDtype(scalarType);
type_obj.is_cuda = (backend == at::Backend::CUDA || backend == at::Backend::SparseCUDA);
}
static void set_name(PyTensorType& type_obj, const std::string& name) {
size_t n = sizeof(type_obj.name);
strncpy(type_obj.name, name.c_str(), n);
type_obj.name[n - 1] = '\0';
}
static THPObjectPtr get_tensor_dict() {
auto torch = THPObjectPtr(PyImport_ImportModule("torch"));
if (!torch) throw python_error();
auto tensor_class = THPObjectPtr(PyObject_GetAttrString(torch, "Tensor"));
if (!tensor_class) throw python_error();
auto tensor_type = (PyTypeObject*)tensor_class.get();
TORCH_CHECK(tensor_type->tp_base, "missing base type for Tensor");
auto res = THPObjectPtr(PyDict_New());
if (!res) throw python_error();
if (PyDict_Merge(res.get(), tensor_type->tp_dict, 0) < 0) {
throw python_error();
}
if (PyDict_Merge(res.get(), tensor_type->tp_base->tp_dict, 0) < 0) {
throw python_error();
}
return res;
}
static std::vector<PyTensorType> tensor_types;
void set_default_tensor_type(PyTensorType* type) {
if (!at::isFloatingType(type->get_scalar_type())) {
throw TypeError("only floating-point types are supported as the default type");
}
if (type->get_backend() == Backend::Undefined) {
throw TypeError("default type cannot be undefined");
}
if (isSparse(type->get_backend())) {
throw TypeError("only dense types are supported as the default type");
}
// get the storage first, so if it doesn't exist we don't change the default tensor type
THPObjectPtr storage = get_storage_obj(type);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
default_tensor_type = type;
at::set_default_dtype(scalarTypeToTypeMeta(type->get_scalar_type()));
auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!torch_module) throw python_error();
if (PyObject_SetAttrString(torch_module.get(), "Storage", storage) != 0) {
// technically, we should undo the change of default tensor type.
throw python_error();
}
}
static void initialize_aten_types(std::vector<PyTensorType>& tensor_types) {
// includes CUDA types even when PyTorch is not built with CUDA
auto declared_types = torch::utils::all_declared_types();
tensor_types.resize(declared_types.size());
for (size_t i = 0, end = declared_types.size(); i != end; i++) {
auto& tensor_type = tensor_types[i];
Backend backend = declared_types[i].first;
ScalarType scalar_type = declared_types[i].second;
set_type(tensor_type, backend, scalar_type);
set_name(tensor_type, get_name(backend, scalar_type));
// Use torch.float32 as the default tensor type
if (backend == Backend::CPU && scalar_type == at::kFloat) {
set_default_tensor_type(&tensor_type);
}
}
}
void initialize_python_bindings() {
// Initialize the at::Type* pointers, name, and properties of the PyTensorType
// vector. After this call, the vector must not be resized.
initialize_aten_types(tensor_types);
// Initialize the Python metaclass for the torch.FloatTensor, etc. types.
// The metaclass handles __instancecheck__ checks and binds the dtype property
// on the type objects.
py_initialize_metaclass(metaclass);
// Get the tp_dict of the Variable class. We copy function definitions
// onto each Tensor type object so that they can be accessed via e.g.
// `torch.FloatTensor.add`.
auto tensor_dict = get_tensor_dict();
// Initialize each Python type object torch.FloatTensor, torch.DoubleTensor, etc.
for (auto& tensor_type : tensor_types) {
py_initialize_tensor_type(tensor_type.py_type, tensor_type.name, tensor_dict.get());
}
// Add the type objects to their corresponding modules. e.g. torch.FloatTensor
// is added to the `torch` module as `FloatTensor`. Also add all the type
// objects to the set torch._tensor_classes.
py_bind_tensor_types(tensor_types);
}
static void py_bind_tensor_types(const std::vector<PyTensorType>& tensor_types) {
auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!torch_module) throw python_error();
auto tensor_classes = THPObjectPtr(PyObject_GetAttrString(torch_module.get(), "_tensor_classes"));
if (!tensor_classes) throw python_error();
for (auto& tensor_type : tensor_types) {
auto name = std::string(tensor_type.name);
auto idx = name.rfind('.');
auto type_name = name.substr(idx + 1);
auto module_name = name.substr(0, idx);
auto module_obj = THPObjectPtr(PyImport_ImportModule(module_name.c_str()));
if (!module_obj) throw python_error();
PyObject* type_obj = (PyObject*)&tensor_type;
Py_INCREF(type_obj);
if (PyModule_AddObject(module_obj.get(), type_name.c_str(), type_obj) < 0) {
throw python_error();
}
if (PySet_Add(tensor_classes.get(), type_obj) < 0) {
throw python_error();
}
}
}
static bool PyTensorType_Check(PyObject* obj) {
auto it = std::find_if(tensor_types.begin(), tensor_types.end(),
[obj](const PyTensorType& x) {
return (PyObject*)&x == obj;
});
return it != tensor_types.end();
}
void py_set_default_tensor_type(PyObject* obj) {
PyTensorType *type;
if (PyTensorType_Check(obj)) {
type = (PyTensorType*)obj;
} else {
throw TypeError("invalid type object");
}
if (type->is_cuda && !torch::utils::cuda_enabled()) {
throw unavailable_type(*type);
}
set_default_tensor_type(type);
}
void py_set_default_dtype(PyObject* obj) {
if (THPDtype_Check(obj)) {
auto scalar_type = ((THPDtype*)obj)->scalar_type;
auto backend = default_tensor_type->get_backend();
auto it = std::find_if(tensor_types.begin(), tensor_types.end(),
[backend, scalar_type](const PyTensorType& x) {
return x.get_backend() == backend && x.get_scalar_type() == scalar_type;
});
set_default_tensor_type(&*it);
} else {
throw TypeError("invalid dtype object");
}
}
c10::DispatchKey get_default_dispatch_key() {
AT_ASSERT(default_tensor_type);
return default_tensor_type->get_dispatch_key();
}
ScalarType get_default_scalar_type() {
return typeMetaToScalarType(get_default_dtype());
}
}} // namespace torch::tensors