mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode) Typically the bytecode for a context manager looks like this during a graph break: 1. graph call 2. enter context 3. unsupported code 4. exit context 5. resume call resume fn structure: 1. enter context 2. jump ... 3. exit context The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack). So for torch function modes the structure of our output code is this: 1. graph call 2. mutate tf mode stack to replay mutations 4. unsupported code 5. on exception restore stack 6. resume function Then our resume fn looks like this: 1. no-op enter torch function mode 2. jump 3. exit tf mode To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context). Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly. Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422 Approved by: https://github.com/williamwen42 ghstack dependencies: #134732, #133137, #135443, #135444
		
			
				
	
	
		
			1296 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1296 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# mypy: allow-untyped-decorators
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import collections
 | 
						|
import contextlib
 | 
						|
import cProfile
 | 
						|
import dis
 | 
						|
import functools
 | 
						|
import itertools
 | 
						|
import logging
 | 
						|
import os
 | 
						|
import pstats
 | 
						|
import random
 | 
						|
import subprocess
 | 
						|
import sys
 | 
						|
import threading
 | 
						|
import time
 | 
						|
import traceback
 | 
						|
import typing
 | 
						|
import weakref
 | 
						|
from pathlib import Path
 | 
						|
from types import CodeType, FrameType, FunctionType, ModuleType
 | 
						|
from typing import Any, Callable, Dict, List, Optional, Set, TypeVar, Union
 | 
						|
from typing_extensions import ParamSpec
 | 
						|
from weakref import ReferenceType
 | 
						|
 | 
						|
import torch
 | 
						|
import torch._logging
 | 
						|
from torch._C._dynamo.guards import GlobalStateGuard
 | 
						|
from torch._dynamo.distributed import get_compile_pg
 | 
						|
from torch._dynamo.utils import CompileTimeInstructionCounter
 | 
						|
from torch._guards import compile_context, CompileContext, CompileId, tracing
 | 
						|
from torch._logging import structured
 | 
						|
from torch._utils_internal import (
 | 
						|
    compile_time_strobelight_meta,
 | 
						|
    justknobs_check,
 | 
						|
    maybe_upload_prof_stats_to_manifold,
 | 
						|
    signpost_event,
 | 
						|
)
 | 
						|
from torch.fx._lazy_graph_module import _use_lazy_graph_module
 | 
						|
from torch.fx.experimental.symbolic_shapes import (
 | 
						|
    ConstraintViolationError,
 | 
						|
    GuardOnDataDependentSymNode,
 | 
						|
)
 | 
						|
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
 | 
						|
from torch.nn.parallel.distributed import DistributedDataParallel
 | 
						|
from torch.utils._python_dispatch import (
 | 
						|
    _disable_current_modes,
 | 
						|
    is_in_torch_dispatch_mode,
 | 
						|
)
 | 
						|
from torch.utils._traceback import CapturedTraceback, format_traceback_short
 | 
						|
 | 
						|
from . import config, exc, trace_rules
 | 
						|
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
 | 
						|
from .bytecode_transformation import (
 | 
						|
    check_inst_exn_tab_entries_valid,
 | 
						|
    Instruction,
 | 
						|
    is_generator,
 | 
						|
    propagate_inst_exn_table_entries,
 | 
						|
    transform_code_object,
 | 
						|
)
 | 
						|
from .cache_size import (
 | 
						|
    CacheSizeRelevantForFrame,
 | 
						|
    compute_cache_size,
 | 
						|
    exceeds_cache_size_limit,
 | 
						|
    is_recompilation,
 | 
						|
)
 | 
						|
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
 | 
						|
from .exc import (
 | 
						|
    augment_exc_message,
 | 
						|
    BackendCompilerFailed,
 | 
						|
    CacheLimitExceeded,
 | 
						|
    format_error_msg,
 | 
						|
    InternalTorchDynamoError,
 | 
						|
    SkipCodeRecursiveException,
 | 
						|
    TorchRuntimeError,
 | 
						|
    UncapturedHigherOrderOpError,
 | 
						|
    unimplemented,
 | 
						|
    Unsupported,
 | 
						|
)
 | 
						|
from .guards import (
 | 
						|
    CheckFunctionManager,
 | 
						|
    get_and_maybe_log_recompilation_reason,
 | 
						|
    GuardedCode,
 | 
						|
)
 | 
						|
from .hooks import Hooks
 | 
						|
from .replay_record import ExecutionRecord
 | 
						|
from .symbolic_convert import (
 | 
						|
    DistributedState,
 | 
						|
    InstructionTranslator,
 | 
						|
    LocalState,
 | 
						|
    SpeculationLog,
 | 
						|
)
 | 
						|
from .trace_rules import is_numpy
 | 
						|
from .utils import (
 | 
						|
    CleanupManager,
 | 
						|
    CompilationMetrics,
 | 
						|
    counters,
 | 
						|
    dynamo_timed,
 | 
						|
    format_bytecode,
 | 
						|
    frame_phase_timing,
 | 
						|
    gen_record_file_name,
 | 
						|
    get_chromium_event_logger,
 | 
						|
    increment_frame,
 | 
						|
    is_namedtuple,
 | 
						|
    istype,
 | 
						|
    LazyString,
 | 
						|
    orig_code_map,
 | 
						|
    record_compilation_metrics,
 | 
						|
    reset_graph_break_dup_checker,
 | 
						|
    setup_compile_debug,
 | 
						|
    troubleshooting_url,
 | 
						|
    write_record_to_file,
 | 
						|
)
 | 
						|
from .variables.torch_function import torch_function_mode_stack_state_mgr
 | 
						|
 | 
						|
 | 
						|
np: Optional[ModuleType]
 | 
						|
try:
 | 
						|
    import numpy as np
 | 
						|
except ModuleNotFoundError:
 | 
						|
    np = None
 | 
						|
 | 
						|
 | 
						|
if typing.TYPE_CHECKING:
 | 
						|
    from .backends.registry import CompilerFn
 | 
						|
    from .repro.after_dynamo import WrapBackendDebug
 | 
						|
    from .types import BytecodeHook, CacheEntry
 | 
						|
    from .variables.builder import FrameStateSizeEntry
 | 
						|
 | 
						|
 | 
						|
log = logging.getLogger(__name__)
 | 
						|
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
 | 
						|
graph_break_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
 | 
						|
 | 
						|
 | 
						|
compile_lock = threading.RLock()
 | 
						|
 | 
						|
_T = TypeVar("_T")
 | 
						|
_P = ParamSpec("_P")
 | 
						|
 | 
						|
 | 
						|
class TODO_UNKNOWN:
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class Tracker:
 | 
						|
    def __init__(self) -> None:
 | 
						|
        self.seen: List[ReferenceType[CodeType]] = []
 | 
						|
        self.seen_ids: Set[int] = set()
 | 
						|
 | 
						|
    def add(self, strong_obj: CodeType) -> None:
 | 
						|
        idx = id(strong_obj)
 | 
						|
        if idx not in self.seen_ids:
 | 
						|
            obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
 | 
						|
            self.seen.append(obj)
 | 
						|
            self.seen_ids.add(idx)
 | 
						|
 | 
						|
    def __contains__(self, item: CodeType) -> bool:
 | 
						|
        return id(item) in self.seen_ids
 | 
						|
 | 
						|
    def clear(self) -> None:
 | 
						|
        self.seen.clear()
 | 
						|
        self.seen_ids.clear()
 | 
						|
 | 
						|
 | 
						|
input_codes = Tracker()
 | 
						|
output_codes = Tracker()
 | 
						|
 | 
						|
initial_global_state: Optional[GlobalStateGuard] = None
 | 
						|
 | 
						|
 | 
						|
@functools.wraps(original_forward_from_src)
 | 
						|
def fx_forward_from_src_skip_result(
 | 
						|
    src: str, globals: Dict[str, Any], co_fields: Optional[Dict[str, str]] = None
 | 
						|
) -> FunctionType:
 | 
						|
    # we monkey patch FX to prevent infinite loop of trying to convert
 | 
						|
    # our generated code
 | 
						|
    result = original_forward_from_src(src, globals, co_fields)
 | 
						|
    skip_code(result.__code__)
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def preserve_global_state(fn: Callable[_P, _T]) -> Callable[_P, _T]:
 | 
						|
    """
 | 
						|
    Context manager to:
 | 
						|
        1) Save/restore torch.is_grad_enabled() state
 | 
						|
        2) Save/restore python random state
 | 
						|
        3) Save/restore torch random state
 | 
						|
        4) Monkey patch torch.fx.graph_module._forward_from_src
 | 
						|
    """
 | 
						|
 | 
						|
    @functools.wraps(fn)
 | 
						|
    def _fn(*args: _P.args, **kwargs: _P.kwargs) -> _T:
 | 
						|
        guards = GlobalStateGuard()
 | 
						|
        prior_grad_mode = torch.is_grad_enabled()
 | 
						|
        # Just in case we get left in a bad dispatch state we want to restore
 | 
						|
        # it. This can happen because the dispatch bits aren't a true
 | 
						|
        # stack/counter - so we can't just increment/decrement them as we enter
 | 
						|
        # and leave.
 | 
						|
        with torch._C._PreserveDispatchKeyGuard():
 | 
						|
            prior_inference_mode = torch.is_inference_mode_enabled()
 | 
						|
            prior_deterministic = torch.are_deterministic_algorithms_enabled()
 | 
						|
            prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
 | 
						|
            py_rng_state = random.getstate()
 | 
						|
            torch_rng_state = torch.random.get_rng_state()
 | 
						|
            cuda_rng_state = None
 | 
						|
            if torch.cuda.is_available():
 | 
						|
                cuda_rng_state = torch.cuda.get_rng_state()
 | 
						|
            allow_tf32 = torch._C._get_cublas_allow_tf32()
 | 
						|
            prior_fwd_from_src = torch.fx.graph_module._forward_from_src
 | 
						|
            torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
 | 
						|
            cleanup = setup_compile_debug()
 | 
						|
            exit_stack = contextlib.ExitStack()
 | 
						|
            exit_stack.enter_context(
 | 
						|
                torch.fx._symbolic_trace._maybe_revert_all_patches()
 | 
						|
            )
 | 
						|
            exit_stack.enter_context(torch_function_mode_stack_state_mgr)
 | 
						|
            try:
 | 
						|
                return fn(*args, **kwargs)
 | 
						|
            finally:
 | 
						|
                cleanup.close()
 | 
						|
                assert (
 | 
						|
                    torch._C._len_torch_function_stack() == 0
 | 
						|
                ), "Torch function mode stack state changed while dynamo tracing, please report a bug"
 | 
						|
                exit_stack.close()
 | 
						|
                torch._C._set_grad_enabled(prior_grad_mode)
 | 
						|
                torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
 | 
						|
                torch.use_deterministic_algorithms(
 | 
						|
                    prior_deterministic, warn_only=prior_warn_only
 | 
						|
                )
 | 
						|
                random.setstate(py_rng_state)
 | 
						|
                torch.random.set_rng_state(torch_rng_state)
 | 
						|
                if cuda_rng_state is not None:
 | 
						|
                    torch.cuda.set_rng_state(cuda_rng_state)
 | 
						|
                torch._C._set_cublas_allow_tf32(allow_tf32)
 | 
						|
                torch.fx.graph_module._forward_from_src = prior_fwd_from_src
 | 
						|
                assert (
 | 
						|
                    guards.check()
 | 
						|
                ), f"Global {guards.reason()}state changed while dynamo tracing, please report a bug"
 | 
						|
 | 
						|
    _fn._torchdynamo_orig_callable = fn  # type: ignore[attr-defined]
 | 
						|
    return _fn
 | 
						|
 | 
						|
 | 
						|
@TorchPatcher.suppress_torch_distributed_warnings
 | 
						|
def has_tensor_in_frame(frame: FrameType) -> bool:
 | 
						|
    """Check if the frame has torch.* related bits"""
 | 
						|
    # Check if the function was decorated using torch._dynamo.optimize
 | 
						|
    if frame.f_code in always_optimize_code_objects:
 | 
						|
        return True
 | 
						|
 | 
						|
    # Check if there is global import of torch.*
 | 
						|
    for co_name in frame.f_code.co_names:
 | 
						|
        if co_name in frame.f_globals:
 | 
						|
            obj = frame.f_globals[co_name]
 | 
						|
            if isinstance(obj, ModuleType) and (
 | 
						|
                obj.__name__.startswith("torch.") or obj is torch
 | 
						|
            ):
 | 
						|
                return True
 | 
						|
            # ... or a global import of numpy.*
 | 
						|
            if np and config.trace_numpy and (obj is np or is_numpy(obj)):
 | 
						|
                return True
 | 
						|
 | 
						|
    seen_ids: Dict[int, bool] = {}
 | 
						|
 | 
						|
    def has_tensor(obj: object) -> bool:
 | 
						|
        """Recursively check if the obj has a tensor"""
 | 
						|
        obj_id = id(obj)
 | 
						|
        if obj_id in seen_ids:
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        seen_ids[obj_id] = False
 | 
						|
 | 
						|
        if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
 | 
						|
            istype(obj, type) and issubclass(obj, torch.nn.Module)
 | 
						|
        ):
 | 
						|
            seen_ids[obj_id] = True
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        elif (
 | 
						|
            config.trace_numpy
 | 
						|
            and np
 | 
						|
            and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
 | 
						|
        ):
 | 
						|
            seen_ids[obj_id] = True
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        elif istype(obj, (list, tuple)):
 | 
						|
            seen_ids[obj_id] = any(has_tensor(v) for v in obj)
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        elif istype(obj, dict):
 | 
						|
            # Some packages like pytest can be updated during runtime. So, make a
 | 
						|
            # copy of values to avoid issues like "RuntimeError: dictionary
 | 
						|
            # changed size during iteration"
 | 
						|
            values = list(obj.values())
 | 
						|
            seen_ids[obj_id] = any(has_tensor(v) for v in values)
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        elif istype(obj, (str, int, float, type(None), bool)):
 | 
						|
            seen_ids[obj_id] = False
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        elif is_namedtuple(obj) and hasattr(obj, "_fields"):
 | 
						|
            seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
 | 
						|
            return seen_ids[obj_id]
 | 
						|
        else:
 | 
						|
            # if config.debug:
 | 
						|
            #     print(
 | 
						|
            #         f"Assuming that object of type {type(obj)} does not have a tensor"
 | 
						|
            #     )
 | 
						|
            return False
 | 
						|
 | 
						|
    # Check if the passed arguments are of type Tensor
 | 
						|
    for value in frame.f_locals.values():
 | 
						|
        if has_tensor(value):
 | 
						|
            return True
 | 
						|
 | 
						|
    log.debug(
 | 
						|
        "skipping because no torch.* %s \
 | 
						|
            %s %s",
 | 
						|
        frame.f_code.co_name,
 | 
						|
        frame.f_code.co_filename,
 | 
						|
        frame.f_code.co_firstlineno,
 | 
						|
    )
 | 
						|
 | 
						|
    return False
 | 
						|
 | 
						|
 | 
						|
def exception_handler(
 | 
						|
    e: Exception,
 | 
						|
    code: CodeType,
 | 
						|
    frame: Optional[FrameType] = None,
 | 
						|
    export: bool = False,
 | 
						|
) -> None:
 | 
						|
    record_filename = None
 | 
						|
    if hasattr(e, "exec_record"):
 | 
						|
        record_filename = gen_record_file_name(e, code)
 | 
						|
        write_record_to_file(record_filename, e.exec_record)
 | 
						|
        e.record_filename = record_filename  # type: ignore[attr-defined]
 | 
						|
 | 
						|
    augment_exc_message(e, export=export)
 | 
						|
 | 
						|
 | 
						|
FRAME_COUNTER = 0
 | 
						|
FRAME_COMPILE_COUNTER: typing.Counter[
 | 
						|
    Union[int, FrameStateSizeEntry]
 | 
						|
] = collections.Counter()
 | 
						|
 | 
						|
 | 
						|
def maybe_cprofile(func: Callable[_P, _T]) -> Callable[_P, _T]:
 | 
						|
    if config.cprofile:
 | 
						|
        return cprofile_wrapper(func)
 | 
						|
    return func
 | 
						|
 | 
						|
 | 
						|
def cprofile_wrapper(func: Callable[_P, _T]) -> Callable[_P, _T]:
 | 
						|
    @functools.wraps(func)
 | 
						|
    def profile_wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _T:
 | 
						|
        trace_id = CompileContext.current_trace_id()
 | 
						|
        assert trace_id, "Trace id is None"
 | 
						|
        profile_path = Path(
 | 
						|
            f"/tmp/{func.__name__}_{str(trace_id).replace('/', '_')}.profile"
 | 
						|
        )
 | 
						|
        prof = cProfile.Profile()
 | 
						|
        prof.enable()
 | 
						|
        start_ts = time.time()
 | 
						|
        retval = prof.runcall(func, *args, **kwargs)
 | 
						|
        profile_latency = time.time() - start_ts
 | 
						|
        prof.disable()
 | 
						|
        log.warning(
 | 
						|
            "### Cprofile for %s trace id [%s] took %.3f seconds ###",
 | 
						|
            func.__name__,
 | 
						|
            trace_id,
 | 
						|
            profile_latency,
 | 
						|
        )
 | 
						|
        ps = pstats.Stats(prof)
 | 
						|
        try:
 | 
						|
            prof.dump_stats(profile_path)
 | 
						|
        except PermissionError:
 | 
						|
            log.exception("Cannot write to %s", profile_path)
 | 
						|
        log.warning("Raw profile at %s", profile_path)
 | 
						|
        svg_path = profile_path.with_suffix(".svg")
 | 
						|
        try:
 | 
						|
            gprof2dot_process = subprocess.Popen(
 | 
						|
                [
 | 
						|
                    "gprof2dot",
 | 
						|
                    "-f",
 | 
						|
                    "pstats",
 | 
						|
                    "--node-label=total-time-percentage",
 | 
						|
                    "--node-label=self-time-percentage",
 | 
						|
                    "--node-label=total-time",
 | 
						|
                    str(profile_path),
 | 
						|
                ],
 | 
						|
                stdout=subprocess.PIPE,
 | 
						|
            )
 | 
						|
            subprocess.check_call(
 | 
						|
                ["dot", "-Tsvg", "-o", str(svg_path)],
 | 
						|
                stdin=gprof2dot_process.stdout,
 | 
						|
            )
 | 
						|
            log.warning("Generated SVG from profile at %s", svg_path)
 | 
						|
        except FileNotFoundError:
 | 
						|
            log.warning(
 | 
						|
                "Failed to generate SVG from profile -- dumping stats instead."
 | 
						|
                "Try installing gprof2dot and dot for a better visualization"
 | 
						|
            )
 | 
						|
            ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
 | 
						|
            ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
 | 
						|
 | 
						|
        if manifold_link := maybe_upload_prof_stats_to_manifold(
 | 
						|
            str(profile_path)
 | 
						|
        ):  # fb-only
 | 
						|
            torch._logging.trace_structured(
 | 
						|
                "link",
 | 
						|
                lambda: {"name": "cprofile_manifold_url", "url": manifold_link},
 | 
						|
            )
 | 
						|
        return retval
 | 
						|
 | 
						|
    return profile_wrapper
 | 
						|
 | 
						|
 | 
						|
class ConvertFrameAssert:
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        compiler_fn: CompilerFn,
 | 
						|
        one_graph: bool = True,
 | 
						|
        export: bool = False,
 | 
						|
        export_constraints: Optional[typing.Never] = None,
 | 
						|
    ) -> None:
 | 
						|
        # assert export_constraints is None
 | 
						|
        reset_graph_break_dup_checker()
 | 
						|
        self._torchdynamo_orig_callable = compiler_fn
 | 
						|
        self._one_graph = one_graph
 | 
						|
        self._export = export
 | 
						|
        self._export_constraints = export_constraints
 | 
						|
 | 
						|
    @property
 | 
						|
    def _clone_with_backend(self) -> Callable[[CompilerFn], ConvertFrameAssert]:
 | 
						|
        return lambda backend: convert_frame_assert(
 | 
						|
            backend, self._one_graph, self._export, self._export_constraints
 | 
						|
        )
 | 
						|
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        frame: FrameType,
 | 
						|
        cache_entry: Optional[CacheEntry],
 | 
						|
        hooks: Hooks,
 | 
						|
        frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
 | 
						|
        *,
 | 
						|
        skip: int = 0,
 | 
						|
    ) -> Optional[GuardedCode]:
 | 
						|
        increment_frame()
 | 
						|
 | 
						|
        code = frame.f_code
 | 
						|
 | 
						|
        cache_size = compute_cache_size(frame, cache_entry)
 | 
						|
        input_codes.add(code)
 | 
						|
        if code in output_codes:
 | 
						|
            return None
 | 
						|
        if (
 | 
						|
            os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
 | 
						|
            and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
 | 
						|
        ):
 | 
						|
            return None
 | 
						|
        if code.co_name == "<genexpr>" and code.co_filename.endswith(
 | 
						|
            (
 | 
						|
                "transformers/file_utils.py",
 | 
						|
                "transformers/utils/generic.py",
 | 
						|
                "diffusers/utils/outputs.py",
 | 
						|
            )
 | 
						|
        ):
 | 
						|
            # not needed, but cleans up torchbench error stats
 | 
						|
            return None
 | 
						|
        if code.co_name == "__setattr__":
 | 
						|
            # setattr could be tricky to handle generally,
 | 
						|
            # but also not likely useful to compile- skip the whole frame
 | 
						|
            return None
 | 
						|
        if code.co_name == "__init__" and code.co_filename.startswith(
 | 
						|
            os.path.dirname(torch.optim.__file__)
 | 
						|
        ):
 | 
						|
            # optimizer support is still incomplete see
 | 
						|
            # test_state_dict in test/dynamo/test_optimizers.py
 | 
						|
            return None
 | 
						|
 | 
						|
        # Check if the frame is generated by an exec builtin call
 | 
						|
        # TODO - Running exec generated frame seems propagates f_globals to the
 | 
						|
        # next frames.
 | 
						|
        if code.co_name == "<module>" and code.co_filename == "<string>":
 | 
						|
            return None
 | 
						|
 | 
						|
        if (
 | 
						|
            code.co_name == "<lambda>"
 | 
						|
            and code.co_filename == "<string>"
 | 
						|
            and not bool(frame.f_builtins)
 | 
						|
        ):
 | 
						|
            # namedtuple subclass constructor. Empty builtins cause issue with
 | 
						|
            # len keyword in LIST_LEN guard.
 | 
						|
            return None
 | 
						|
 | 
						|
        if is_generator(code):
 | 
						|
            unimplemented("generator")
 | 
						|
 | 
						|
        if not has_tensor_in_frame(frame):
 | 
						|
            return None
 | 
						|
 | 
						|
        global initial_global_state
 | 
						|
        initial_global_state = GlobalStateGuard()
 | 
						|
 | 
						|
        global FRAME_COUNTER
 | 
						|
        if "_id" not in frame_state:
 | 
						|
            frame_state["_id"] = FRAME_COUNTER
 | 
						|
            FRAME_COUNTER += 1
 | 
						|
        frame_id = frame_state["_id"]
 | 
						|
        assert isinstance(frame_id, int)
 | 
						|
 | 
						|
        frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
 | 
						|
        FRAME_COMPILE_COUNTER[frame_id] += 1
 | 
						|
 | 
						|
        compile_id = CompileId(frame_id, frame_compile_id)
 | 
						|
 | 
						|
        signpost_event(
 | 
						|
            "dynamo",
 | 
						|
            "_convert_frame_assert._compile",
 | 
						|
            {
 | 
						|
                "co_name": code.co_name,
 | 
						|
                "frame_id": frame_id,
 | 
						|
                "compile_id": str(compile_id),
 | 
						|
                "co_filename": code.co_filename,
 | 
						|
                "co_firstlineno": code.co_firstlineno,
 | 
						|
                "cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
 | 
						|
                "accumulated_cache_size": cache_size.num_cache_entries,
 | 
						|
            },
 | 
						|
        )
 | 
						|
 | 
						|
        return _compile(
 | 
						|
            frame.f_code,
 | 
						|
            frame.f_globals,
 | 
						|
            frame.f_locals,
 | 
						|
            frame.f_builtins,
 | 
						|
            self._torchdynamo_orig_callable,
 | 
						|
            self._one_graph,
 | 
						|
            self._export,
 | 
						|
            self._export_constraints,
 | 
						|
            hooks,
 | 
						|
            cache_entry,
 | 
						|
            cache_size,
 | 
						|
            frame,
 | 
						|
            frame_state=frame_state,
 | 
						|
            compile_id=compile_id,
 | 
						|
            skip=skip + 1,
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def convert_frame_assert(
 | 
						|
    compiler_fn: CompilerFn,
 | 
						|
    one_graph: bool = True,
 | 
						|
    export: bool = False,
 | 
						|
    export_constraints: Optional[typing.Never] = None,
 | 
						|
) -> ConvertFrameAssert:
 | 
						|
    """Fully convert a frame into an FX graph"""
 | 
						|
    return ConvertFrameAssert(compiler_fn, one_graph, export, export_constraints)
 | 
						|
 | 
						|
 | 
						|
from collections import OrderedDict
 | 
						|
 | 
						|
from torch.utils.hooks import RemovableHandle
 | 
						|
 | 
						|
 | 
						|
if typing.TYPE_CHECKING:
 | 
						|
    from .output_graph import OutputGraph
 | 
						|
 | 
						|
# we have to use `OrderedDict` to make `RemovableHandle` work.
 | 
						|
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
 | 
						|
 | 
						|
 | 
						|
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
 | 
						|
    """Register hooks for bytecode generated by Dynamo. The hook can do some
 | 
						|
    logging, as well as return a new code object to be used. Please refer
 | 
						|
    to `BytecodeHook` for the hook signature.
 | 
						|
    """
 | 
						|
    handle = RemovableHandle(_bytecode_hooks)
 | 
						|
    _bytecode_hooks[handle.id] = hook
 | 
						|
    return handle
 | 
						|
 | 
						|
 | 
						|
def _compile(
 | 
						|
    code: CodeType,
 | 
						|
    globals: Dict[str, object],
 | 
						|
    locals: Dict[str, object],
 | 
						|
    builtins: Dict[str, object],
 | 
						|
    compiler_fn: CompilerFn,
 | 
						|
    one_graph: bool,
 | 
						|
    export: bool,
 | 
						|
    export_constraints: Optional[typing.Never],
 | 
						|
    hooks: Hooks,
 | 
						|
    cache_entry: Optional[CacheEntry],
 | 
						|
    cache_size: CacheSizeRelevantForFrame,
 | 
						|
    frame: Optional[FrameType] = None,
 | 
						|
    frame_state: Optional[Dict[str, Union[int, FrameStateSizeEntry]]] = None,
 | 
						|
    *,
 | 
						|
    compile_id: CompileId,
 | 
						|
    skip: int = 0,
 | 
						|
) -> Optional[GuardedCode]:
 | 
						|
    from torch.fx.experimental.validator import (
 | 
						|
        bisect,
 | 
						|
        BisectValidationException,
 | 
						|
        translation_validation_enabled,
 | 
						|
        ValidationException,
 | 
						|
    )
 | 
						|
 | 
						|
    # Only nonlocal defs here please!
 | 
						|
    # Time spent compiling this frame before restarting or failing analysis
 | 
						|
    dynamo_time_before_restart: float = 0.0
 | 
						|
    output: Optional[OutputGraph] = None
 | 
						|
    tracer: Optional[InstructionTranslator] = None
 | 
						|
 | 
						|
    tf_mode_stack: List[
 | 
						|
        torch.overrides.TorchFunctionMode
 | 
						|
    ] = torch.overrides._get_current_function_mode_stack()
 | 
						|
 | 
						|
    @preserve_global_state
 | 
						|
    def transform(
 | 
						|
        instructions: List[Instruction], code_options: Dict[str, object]
 | 
						|
    ) -> None:
 | 
						|
        nonlocal output
 | 
						|
        nonlocal tracer
 | 
						|
        speculation_log.restart()
 | 
						|
        tracer = InstructionTranslator(
 | 
						|
            instructions,
 | 
						|
            code,
 | 
						|
            locals,
 | 
						|
            globals,
 | 
						|
            builtins,
 | 
						|
            tf_mode_stack,
 | 
						|
            code_options,
 | 
						|
            compiler_fn,
 | 
						|
            one_graph,
 | 
						|
            export,
 | 
						|
            export_constraints,
 | 
						|
            mutated_closure_cell_contents,
 | 
						|
            frame_state=frame_state,
 | 
						|
            speculation_log=speculation_log,
 | 
						|
            distributed_state=distributed_state,
 | 
						|
        )
 | 
						|
 | 
						|
        try:
 | 
						|
            with tracing(tracer.output.tracing_context), tracer.set_current_tx():
 | 
						|
                tracer.run()
 | 
						|
        except exc.UnspecializeRestartAnalysis:
 | 
						|
            speculation_log.clear()
 | 
						|
            raise
 | 
						|
        except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
 | 
						|
            raise
 | 
						|
        except Exception:
 | 
						|
            if translation_validation_enabled():
 | 
						|
                bisect(tracer.output.shape_env)
 | 
						|
            raise
 | 
						|
        finally:
 | 
						|
            tracer.output.call_cleanup_hooks()
 | 
						|
 | 
						|
        output = tracer.output
 | 
						|
        assert output is not None
 | 
						|
        assert output.output_instructions
 | 
						|
        instructions[:] = output.output_instructions
 | 
						|
        code_options.update(output.code_options)
 | 
						|
 | 
						|
        if config.dead_code_elimination:
 | 
						|
            propagate_inst_exn_table_entries(instructions)
 | 
						|
            check_inst_exn_tab_entries_valid(instructions)
 | 
						|
            instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
 | 
						|
 | 
						|
    def compile_inner(
 | 
						|
        code: CodeType,
 | 
						|
        one_graph: bool,
 | 
						|
        hooks: Hooks,
 | 
						|
        transform: Callable[[List[Instruction], Dict[str, Any]], Any],
 | 
						|
    ) -> Optional[GuardedCode]:
 | 
						|
        with dynamo_timed("_compile.compile_inner", phase_name="entire_frame_compile"):
 | 
						|
            with CompileTimeInstructionCounter.record():
 | 
						|
                return _compile_inner(code, one_graph, hooks, transform)
 | 
						|
 | 
						|
    @compile_time_strobelight_meta(phase_name="compile_inner")
 | 
						|
    @maybe_cprofile
 | 
						|
    def _compile_inner(
 | 
						|
        code: CodeType,
 | 
						|
        one_graph: bool,
 | 
						|
        hooks: Hooks,
 | 
						|
        transform: Callable[[List[Instruction], Dict[str, Any]], Any],
 | 
						|
    ) -> Optional[GuardedCode]:
 | 
						|
        nonlocal dynamo_time_before_restart
 | 
						|
        last_attempt_start_time = start_time = time.time()
 | 
						|
 | 
						|
        def log_bytecode(
 | 
						|
            prefix: str, name: str, filename: str, line_no: int, code: CodeType
 | 
						|
        ) -> None:
 | 
						|
            if bytecode_log.isEnabledFor(logging.DEBUG):
 | 
						|
                bytecode_log.debug(
 | 
						|
                    format_bytecode(prefix, name, filename, line_no, code)
 | 
						|
                )
 | 
						|
 | 
						|
        log_bytecode(
 | 
						|
            "ORIGINAL BYTECODE",
 | 
						|
            code.co_name,
 | 
						|
            code.co_filename,
 | 
						|
            code.co_firstlineno,
 | 
						|
            code,
 | 
						|
        )
 | 
						|
 | 
						|
        out_code = None
 | 
						|
        for attempt in itertools.count():
 | 
						|
            CompileContext.get().attempt = attempt
 | 
						|
            try:
 | 
						|
                out_code = transform_code_object(code, transform)
 | 
						|
                break
 | 
						|
            except exc.RestartAnalysis as e:
 | 
						|
                log.info(
 | 
						|
                    "Restarting analysis due to %s",
 | 
						|
                    LazyString(format_traceback_short, e.__traceback__),
 | 
						|
                )
 | 
						|
                # If restart reason is None just log the type of the exception
 | 
						|
                restart_reasons.add(e.restart_reason or str(type(e)))
 | 
						|
                # We now have a new "last attempt", reset the clock
 | 
						|
                last_attempt_start_time = time.time()
 | 
						|
                if attempt > 100:
 | 
						|
                    unimplemented("100+ RestartAnalysis() calls")
 | 
						|
            except exc.SkipFrame as e:
 | 
						|
                log.debug(
 | 
						|
                    "Skipping frame %s %s \
 | 
						|
                    %s %s",
 | 
						|
                    e,
 | 
						|
                    code.co_name,
 | 
						|
                    code.co_filename,
 | 
						|
                    code.co_firstlineno,
 | 
						|
                )
 | 
						|
                if one_graph:
 | 
						|
                    log.debug("No graph captured with one_graph=True")
 | 
						|
                return None
 | 
						|
 | 
						|
        assert (
 | 
						|
            distributed_state is None or distributed_state.all_states is not None
 | 
						|
        ), "compiler collective wasn't run before compilation completed"
 | 
						|
 | 
						|
        assert out_code is not None
 | 
						|
        log_bytecode(
 | 
						|
            "MODIFIED BYTECODE",
 | 
						|
            code.co_name,
 | 
						|
            code.co_filename,
 | 
						|
            code.co_firstlineno,
 | 
						|
            out_code,
 | 
						|
        )
 | 
						|
 | 
						|
        for hook in _bytecode_hooks.values():
 | 
						|
            hook_output = hook(code, out_code)
 | 
						|
            if hook_output is not None:
 | 
						|
                out_code = hook_output
 | 
						|
 | 
						|
        orig_code_map[out_code] = code
 | 
						|
        output_codes.add(out_code)
 | 
						|
        dynamo_time_before_restart = last_attempt_start_time - start_time
 | 
						|
        assert output is not None
 | 
						|
 | 
						|
        # Tests for new code objects.
 | 
						|
        # The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
 | 
						|
        # Only test once the code object is created.
 | 
						|
        # They are not tested during runtime.
 | 
						|
 | 
						|
        def count_args(code: CodeType) -> int:
 | 
						|
            import inspect
 | 
						|
 | 
						|
            return (
 | 
						|
                code.co_argcount
 | 
						|
                + code.co_kwonlyargcount
 | 
						|
                + bool(code.co_flags & inspect.CO_VARARGS)
 | 
						|
                + bool(code.co_flags & inspect.CO_VARKEYWORDS)
 | 
						|
            )
 | 
						|
 | 
						|
        assert out_code is not None
 | 
						|
 | 
						|
        total_argcount_old = count_args(code)
 | 
						|
        total_argcount_new = count_args(out_code)
 | 
						|
        msg = "arg mismatch: "
 | 
						|
        msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
 | 
						|
        msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
 | 
						|
        assert (
 | 
						|
            code.co_varnames[:total_argcount_old]
 | 
						|
            == out_code.co_varnames[:total_argcount_new]
 | 
						|
        ), msg
 | 
						|
 | 
						|
        msg = "free var mismatch: "
 | 
						|
        msg += f"old code object has free var {code.co_freevars}, "
 | 
						|
        msg += f"new code object has free var {out_code.co_freevars}"
 | 
						|
        assert code.co_freevars == out_code.co_freevars, msg
 | 
						|
 | 
						|
        msg = "cell var mismatch: "
 | 
						|
        msg += f"old code object has cell var {code.co_cellvars}, "
 | 
						|
        msg += f"new code object has cell var {out_code.co_cellvars}"
 | 
						|
        assert code.co_cellvars == out_code.co_cellvars, msg
 | 
						|
 | 
						|
        # Skipping Dynamo on a frame without any extracted graph.
 | 
						|
        # This does not affect eager functionality. But this is necessary
 | 
						|
        # for export for cases where Dynamo-reconstructed bytecode can create
 | 
						|
        # new function frames, confusing export in thinking that there
 | 
						|
        # are extra graphs now.
 | 
						|
 | 
						|
        if output.export and output.is_empty_graph():
 | 
						|
            return None
 | 
						|
 | 
						|
        assert output.guards is not None
 | 
						|
        CleanupManager.instance[out_code] = output.cleanups
 | 
						|
        check_fn = CheckFunctionManager(
 | 
						|
            output,
 | 
						|
            hooks.guard_fail_fn if hooks else None,
 | 
						|
        )
 | 
						|
 | 
						|
        guarded_code = GuardedCode(out_code, check_fn.check_fn, compile_id)
 | 
						|
 | 
						|
        if not output.is_empty_graph() and hooks.guard_export_fn is not None:
 | 
						|
            # We should not run the guard_export_fn when Dynamo does not
 | 
						|
            # generate any graph. This can happen in export when TorchDynamo
 | 
						|
            # generated bytecode has some reconstruction logic for mutated
 | 
						|
            # variables which can trigger TorchDynamo on the children frames but
 | 
						|
            # they are benign and do not generate any new graphs.
 | 
						|
            hooks.guard_export_fn(output.guards)
 | 
						|
 | 
						|
        return guarded_code
 | 
						|
 | 
						|
    with _use_lazy_graph_module(config.use_lazy_graph_module), compile_context(
 | 
						|
        CompileContext(compile_id)
 | 
						|
    ):
 | 
						|
        restart_reasons: set[str] = set()
 | 
						|
        # This is shared across restarts
 | 
						|
        mutated_closure_cell_contents: Set[str] = set()
 | 
						|
        speculation_log = SpeculationLog()
 | 
						|
        if compile_pg := get_compile_pg():
 | 
						|
            distributed_state = DistributedState(compile_pg, LocalState())
 | 
						|
        else:
 | 
						|
            distributed_state = None
 | 
						|
        torch._dynamo.callback_handler.run_start_callbacks()
 | 
						|
 | 
						|
        # Check recompilations
 | 
						|
        recompile_reasons = None
 | 
						|
        if is_recompilation(cache_size) and frame:
 | 
						|
            recompile_reasons = get_and_maybe_log_recompilation_reason(
 | 
						|
                cache_entry, frame
 | 
						|
            )
 | 
						|
 | 
						|
        exceeded, limit_type = exceeds_cache_size_limit(cache_size, compile_id)
 | 
						|
        if exceeded:
 | 
						|
 | 
						|
            def format_func_info(code: CodeType) -> str:
 | 
						|
                return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
 | 
						|
 | 
						|
            def format_guard_failures() -> str:
 | 
						|
                if not recompile_reasons:
 | 
						|
                    return "Unable to find recompilation reasons"
 | 
						|
                return recompile_reasons[-1]
 | 
						|
 | 
						|
            log.warning(
 | 
						|
                "torch._dynamo hit config.%s (%s)\n"
 | 
						|
                "   function: %s\n"
 | 
						|
                "   last reason: %s\n"
 | 
						|
                'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
 | 
						|
                "To diagnose recompilation issues, see %s.",
 | 
						|
                limit_type,
 | 
						|
                getattr(config, limit_type),
 | 
						|
                format_func_info(code),
 | 
						|
                format_guard_failures(),
 | 
						|
                troubleshooting_url,
 | 
						|
            )
 | 
						|
            if config.skip_code_recursive_on_cache_limit_hit and justknobs_check(
 | 
						|
                "pytorch/compiler:skip_code_recursive_on_cache_limit_hit"
 | 
						|
            ):
 | 
						|
                raise CacheLimitExceeded(f"{limit_type} reached")
 | 
						|
            else:
 | 
						|
                # do not recursively skip frames
 | 
						|
                unimplemented(f"{limit_type} reached")
 | 
						|
 | 
						|
        log.debug(
 | 
						|
            "torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
 | 
						|
            code.co_name,
 | 
						|
            code.co_filename,
 | 
						|
            code.co_firstlineno,
 | 
						|
            skip + 2,
 | 
						|
            # -2: omit current frame, omit contextlib decorator
 | 
						|
            "".join(CapturedTraceback.extract(skip=2 + skip).format()),
 | 
						|
        )
 | 
						|
        # -4: -2 as above, plus trace_structured frames
 | 
						|
        #
 | 
						|
        # NB: the frame looks like this:
 | 
						|
        #
 | 
						|
        # # handled by skip argument
 | 
						|
        # torch/_dynamo/convert_frame.py:1069 in catch_errors
 | 
						|
        # torch/_dynamo/convert_frame.py:910 in _convert_frame
 | 
						|
        # torch/_dynamo/convert_frame.py:464 in _convert_frame_assert
 | 
						|
        # torch/_utils_internal.py:70 in wrapper_function
 | 
						|
        #
 | 
						|
        # # 2 current frame and context lib
 | 
						|
        # env/lib/python3.10/contextlib.py:79 in inner
 | 
						|
        # torch/_dynamo/convert_frame.py:776 in _compile
 | 
						|
        #
 | 
						|
        # # 2 extra here
 | 
						|
        # torch/_logging/_internal.py:1064 in trace_structured
 | 
						|
        # torch/_dynamo/convert_frame.py:780 in <lambda>
 | 
						|
        convert_frame_intern = structured.intern_string(__file__)
 | 
						|
        # Initialize the ChromiumEventLogger on start
 | 
						|
        chromium_event_log = get_chromium_event_logger()
 | 
						|
        chromium_event_log.reset()
 | 
						|
        torch._logging.trace_structured(
 | 
						|
            "dynamo_start",
 | 
						|
            lambda: {
 | 
						|
                "stack": list(
 | 
						|
                    itertools.takewhile(
 | 
						|
                        lambda f: f["filename"] != convert_frame_intern,
 | 
						|
                        structured.from_traceback(
 | 
						|
                            CapturedTraceback.extract(skip=4 + skip).summary()
 | 
						|
                        ),
 | 
						|
                    )
 | 
						|
                )
 | 
						|
                + [
 | 
						|
                    {
 | 
						|
                        "line": code.co_firstlineno,
 | 
						|
                        "name": code.co_name,
 | 
						|
                        "filename": structured.intern_string(code.co_filename),
 | 
						|
                    }
 | 
						|
                ]
 | 
						|
            },
 | 
						|
        )
 | 
						|
        start_time = time.time()
 | 
						|
        fail_type: Optional[str] = None
 | 
						|
        fail_reason: Optional[str] = None
 | 
						|
        fail_user_frame_filename: Optional[str] = None
 | 
						|
        fail_user_frame_lineno: Optional[int] = None
 | 
						|
        start_possibly_missed_reinplacing_opportunities = torch._dynamo.utils.counters[
 | 
						|
            "inductor"
 | 
						|
        ]["possibly_missed_reinplacing_opportunities"]
 | 
						|
        guarded_code = None
 | 
						|
        try:
 | 
						|
            guarded_code = compile_inner(code, one_graph, hooks, transform)
 | 
						|
            return guarded_code
 | 
						|
        except Exception as e:
 | 
						|
            fail_type = type(e).__qualname__
 | 
						|
            fail_reason = str(e)
 | 
						|
            # NB: e's msg is mutated here to add user stack, but we DON'T want
 | 
						|
            # that stack in the Scuba logged fail_reason
 | 
						|
            exception_handler(e, code, frame, export=export)
 | 
						|
            # NB: this is the post-mutation exception
 | 
						|
            torch._logging.trace_structured(
 | 
						|
                "artifact",
 | 
						|
                metadata_fn=lambda: {
 | 
						|
                    "name": "dynamo_error",
 | 
						|
                    "encoding": "string",
 | 
						|
                },
 | 
						|
                payload_fn=lambda: traceback.format_exc(),
 | 
						|
            )
 | 
						|
            fail_user_frame_filename, fail_user_frame_lineno = exc.get_exc_message(
 | 
						|
                e, compile_id
 | 
						|
            )
 | 
						|
            if isinstance(
 | 
						|
                e,
 | 
						|
                (
 | 
						|
                    Unsupported,
 | 
						|
                    TorchRuntimeError,
 | 
						|
                    BackendCompilerFailed,
 | 
						|
                    AssertionError,
 | 
						|
                    ConstraintViolationError,
 | 
						|
                    GuardOnDataDependentSymNode,
 | 
						|
                    ValidationException,
 | 
						|
                    UncapturedHigherOrderOpError,
 | 
						|
                    BisectValidationException,
 | 
						|
                ),
 | 
						|
            ):
 | 
						|
                raise
 | 
						|
            else:
 | 
						|
                # Rewrap for clarity
 | 
						|
                raise InternalTorchDynamoError(
 | 
						|
                    f"{type(e).__qualname__}: {str(e)}"
 | 
						|
                ).with_traceback(e.__traceback__) from None
 | 
						|
        finally:
 | 
						|
            if tracer:
 | 
						|
                tracer.output.local_scope = {}
 | 
						|
 | 
						|
            from .utils import curr_frame
 | 
						|
 | 
						|
            frame_key = str(curr_frame)
 | 
						|
            if (
 | 
						|
                fail_reason is None
 | 
						|
                and output is not None
 | 
						|
                and frame_key in frame_phase_timing
 | 
						|
            ):
 | 
						|
                guard_count = len(output.guards)
 | 
						|
                shape_env_guard_count = len(output.shape_env.guards)
 | 
						|
                graph_op_count = output.count_calls()
 | 
						|
                graph_node_count = len(output.graph.nodes)
 | 
						|
                graph_input_count = len(output.placeholders)
 | 
						|
                entire_frame_compile_time = frame_phase_timing[frame_key].get(
 | 
						|
                    "entire_frame_compile", None
 | 
						|
                )
 | 
						|
                backend_compile_time = frame_phase_timing[frame_key].get(
 | 
						|
                    "backend_compile", None
 | 
						|
                )
 | 
						|
                inductor_compile_time = frame_phase_timing[frame_key].get(
 | 
						|
                    "inductor_compile", None
 | 
						|
                )
 | 
						|
                code_gen_time = frame_phase_timing[frame_key].get("code_gen", None)
 | 
						|
                non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
 | 
						|
                compliant_custom_ops = {
 | 
						|
                    op.__qualname__ for op in output.compliant_custom_ops
 | 
						|
                }
 | 
						|
                possibly_missed_reinplacing_opportunities = (
 | 
						|
                    torch._dynamo.utils.counters["inductor"][
 | 
						|
                        "possibly_missed_reinplacing_opportunities"
 | 
						|
                    ]
 | 
						|
                    - start_possibly_missed_reinplacing_opportunities
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                guard_count = None
 | 
						|
                shape_env_guard_count = None
 | 
						|
                graph_op_count = None
 | 
						|
                graph_node_count = None
 | 
						|
                graph_input_count = None
 | 
						|
                entire_frame_compile_time = None
 | 
						|
                backend_compile_time = None
 | 
						|
                inductor_compile_time = None
 | 
						|
                code_gen_time = None
 | 
						|
                non_compliant_ops = set({})
 | 
						|
                compliant_custom_ops = set({})
 | 
						|
                restart_reasons = set()
 | 
						|
                # If compilation failed, the entire time is wasted
 | 
						|
                dynamo_time_before_restart = time.time() - start_time
 | 
						|
                possibly_missed_reinplacing_opportunities = None
 | 
						|
 | 
						|
            metrics = CompilationMetrics(
 | 
						|
                str(compile_id),
 | 
						|
                frame_key,
 | 
						|
                code.co_name,
 | 
						|
                code.co_filename,
 | 
						|
                code.co_firstlineno,
 | 
						|
                cache_size.num_cache_entries_with_same_id_matched_objs,
 | 
						|
                cache_size.num_cache_entries,
 | 
						|
                guard_count,
 | 
						|
                shape_env_guard_count,
 | 
						|
                graph_op_count,
 | 
						|
                graph_node_count,
 | 
						|
                graph_input_count,
 | 
						|
                start_time,
 | 
						|
                entire_frame_compile_time,
 | 
						|
                backend_compile_time,
 | 
						|
                inductor_compile_time,
 | 
						|
                code_gen_time,
 | 
						|
                fail_type,
 | 
						|
                fail_reason,
 | 
						|
                fail_user_frame_filename,
 | 
						|
                fail_user_frame_lineno,
 | 
						|
                non_compliant_ops,
 | 
						|
                compliant_custom_ops,
 | 
						|
                restart_reasons,
 | 
						|
                dynamo_time_before_restart,
 | 
						|
                guarded_code is not None,
 | 
						|
                possibly_missed_reinplacing_opportunities,
 | 
						|
            )
 | 
						|
            record_compilation_metrics(metrics)
 | 
						|
            torch._dynamo.callback_handler.run_end_callbacks()
 | 
						|
 | 
						|
 | 
						|
class ConvertFrame:
 | 
						|
    def __init__(self, compiler_fn: CompilerFn, hooks: Hooks) -> None:
 | 
						|
        self._torchdynamo_orig_callable = compiler_fn
 | 
						|
        self._inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
 | 
						|
        self._hooks = hooks
 | 
						|
 | 
						|
    @property
 | 
						|
    def _clone_with_backend(self) -> Callable[[WrapBackendDebug], ConvertFrame]:
 | 
						|
        return lambda backend: convert_frame(backend, self._hooks)
 | 
						|
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        frame: FrameType,
 | 
						|
        cache_entry: Optional[CacheEntry],
 | 
						|
        hooks: Hooks,
 | 
						|
        frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
 | 
						|
        skip: int = 0,
 | 
						|
    ) -> Optional[
 | 
						|
        Union[GuardedCode, torch._C._dynamo.eval_frame.SkipCodeRecursiveFlag]
 | 
						|
    ]:
 | 
						|
        counters["frames"]["total"] += 1
 | 
						|
        try:
 | 
						|
            result = self._inner_convert(
 | 
						|
                frame, cache_entry, hooks, frame_state, skip=skip + 1
 | 
						|
            )
 | 
						|
            counters["frames"]["ok"] += 1
 | 
						|
            return result
 | 
						|
        except Exception as e:
 | 
						|
            # These two exception types are "soft" failure, in the sense that
 | 
						|
            # we know this is due to something we didn't implement all the
 | 
						|
            # way, scare the user less about it.  That being said, if you
 | 
						|
            # are trying to understand why a graph break happened, it's still
 | 
						|
            # important to have this information, so offer it.
 | 
						|
            #
 | 
						|
            # NB: NotImplementedError used to be on this list, but actually
 | 
						|
            # it is impossible for it to reach here, as it is converted into
 | 
						|
            # InternalTorchDynamoError.  This behavior seemed reasonable
 | 
						|
            # to me (ezyang, Aug 2023) so I kept it, but maybe at some point
 | 
						|
            # someone wanted these to also get suppressed.  If so, you'll
 | 
						|
            # need to make these exceptions not get wrapped
 | 
						|
 | 
						|
            # We intentionally don't want to suppress error here.
 | 
						|
            if isinstance(e, UncapturedHigherOrderOpError):
 | 
						|
                raise
 | 
						|
 | 
						|
            soft_fail = isinstance(e, Unsupported)
 | 
						|
 | 
						|
            # This is a soft failure. In the sense, the code path reaches here
 | 
						|
            # when we do not support graph breaks on bytecodes like LOAD_ATTR,
 | 
						|
            # BUILD_SET etc. In such case, we can fallback to eager without
 | 
						|
            # scaring users.
 | 
						|
            if isinstance(e, Unsupported) and graph_break_log.isEnabledFor(
 | 
						|
                logging.DEBUG
 | 
						|
            ):
 | 
						|
                # Log this message in the graph break. Also use the string
 | 
						|
                # "skip: " to tell that the whole frame is falling back to
 | 
						|
                # eager.
 | 
						|
                if hasattr(e, "compile_id"):
 | 
						|
                    with compile_context(CompileContext(e.compile_id)):  # type: ignore[attr-defined]
 | 
						|
                        user_stack = e.real_stack
 | 
						|
                        user_stack_formatted = "".join(
 | 
						|
                            traceback.format_list(user_stack)
 | 
						|
                        )
 | 
						|
                        graph_break_log.debug(
 | 
						|
                            "Graph break: skip: from user code at:\n%s",
 | 
						|
                            user_stack_formatted,
 | 
						|
                            exc_info=True,
 | 
						|
                        )
 | 
						|
 | 
						|
            if not config.suppress_errors and not soft_fail:
 | 
						|
                raise
 | 
						|
 | 
						|
            # Suppress the error.  NB: It's very important to do the
 | 
						|
            # suppression logging HERE, where the actual suppression
 | 
						|
            # happens. Previously it was somewhere else and so it was
 | 
						|
            # possible to accidentally not log at all.
 | 
						|
            record_filename = getattr(e, "record_filename", None)
 | 
						|
            code = frame.f_code
 | 
						|
            error_msg = format_error_msg(e, code, record_filename, frame)
 | 
						|
 | 
						|
            if soft_fail:
 | 
						|
                log.info(error_msg, exc_info=True)
 | 
						|
            else:
 | 
						|
                log.warning(error_msg, exc_info=True)
 | 
						|
 | 
						|
            # If we encounter SkipCodeRecursiveException, return skip_code_recursive_flag
 | 
						|
            # to signal to Dynamo eval frame to skip the current frame and any recursive calls.
 | 
						|
            if isinstance(e, SkipCodeRecursiveException):
 | 
						|
                return torch._C._dynamo.eval_frame.skip_code_recursive_flag
 | 
						|
 | 
						|
        return None
 | 
						|
 | 
						|
 | 
						|
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks) -> ConvertFrame:
 | 
						|
    """Try to convert a frame into an FX graph, if error leave frame unmodified"""
 | 
						|
    return ConvertFrame(compiler_fn, hooks)
 | 
						|
 | 
						|
 | 
						|
# TODO mlazos: add support for same args, or record them
 | 
						|
def replay(filename: str) -> None:
 | 
						|
    from .backends.debugging import eager
 | 
						|
 | 
						|
    original_replay_val = config.replay_record_enabled
 | 
						|
    config.replay_record_enabled = False
 | 
						|
    with open(filename, "rb") as in_file:
 | 
						|
        record = ExecutionRecord.load(in_file)
 | 
						|
    record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
 | 
						|
 | 
						|
    try:
 | 
						|
        _compile(
 | 
						|
            record.code,
 | 
						|
            record.globals,
 | 
						|
            record.locals,
 | 
						|
            record.builtins,
 | 
						|
            compiler_fn=eager,
 | 
						|
            one_graph=False,
 | 
						|
            export=False,
 | 
						|
            export_constraints=None,
 | 
						|
            hooks=Hooks(),
 | 
						|
            cache_size=CacheSizeRelevantForFrame(0, 0),
 | 
						|
            cache_entry=None,
 | 
						|
            frame=None,
 | 
						|
            frame_state={},
 | 
						|
            compile_id=CompileId(42, 999),
 | 
						|
        )
 | 
						|
    finally:
 | 
						|
        config.replay_record_enabled = original_replay_val
 | 
						|
 | 
						|
 | 
						|
def first_real_inst_idx(code: CodeType) -> int:
 | 
						|
    if sys.version_info < (3, 11):
 | 
						|
        return 0
 | 
						|
    for inst in dis.get_instructions(code):
 | 
						|
        if inst.opname == "RESUME":
 | 
						|
            return inst.offset // 2
 | 
						|
    raise RuntimeError("RESUME instruction not found in code")
 | 
						|
 | 
						|
 | 
						|
class ConvertFrameProtocol(typing.Protocol):
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        frame: FrameType,
 | 
						|
        cache_entry: Optional[CacheEntry],
 | 
						|
        hooks: Hooks,
 | 
						|
        frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
 | 
						|
        *,
 | 
						|
        skip: int = 0,
 | 
						|
    ) -> Optional[GuardedCode]:
 | 
						|
        ...
 | 
						|
 | 
						|
 | 
						|
class CatchErrorsWrapper:
 | 
						|
    def __init__(self, callback: ConvertFrameProtocol, hooks: Hooks) -> None:
 | 
						|
        functools.wraps(callback)(self)
 | 
						|
        self._torchdynamo_orig_callable = callback
 | 
						|
        self.hooks = hooks
 | 
						|
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        frame: FrameType,
 | 
						|
        cache_entry: Optional[CacheEntry],
 | 
						|
        frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
 | 
						|
    ) -> Optional[GuardedCode]:
 | 
						|
        assert frame_state is not None
 | 
						|
 | 
						|
        is_skipfile = trace_rules.check(frame.f_code)
 | 
						|
        if sys.version_info >= (3, 13):
 | 
						|
            has_started_execution = frame.f_lasti > first_real_inst_idx(frame.f_code)
 | 
						|
        else:
 | 
						|
            has_started_execution = frame.f_lasti >= first_real_inst_idx(frame.f_code)
 | 
						|
        if (
 | 
						|
            # TODO: the first condition is not covered by any test
 | 
						|
            has_started_execution
 | 
						|
            or is_skipfile
 | 
						|
            or config.disable
 | 
						|
            or (
 | 
						|
                is_in_torch_dispatch_mode(include_infra_modes=False)
 | 
						|
                and not getattr(self._torchdynamo_orig_callable, "_export", False)
 | 
						|
            )
 | 
						|
        ):
 | 
						|
            if log.isEnabledFor(logging.DEBUG):
 | 
						|
                print(frame.f_lasti, first_real_inst_idx(frame.f_code))
 | 
						|
 | 
						|
                if has_started_execution:
 | 
						|
                    skip_reason = "traced frame already"
 | 
						|
                elif trace_rules.check(frame.f_code):
 | 
						|
                    skip_reason = "in skipfiles"
 | 
						|
                elif is_in_torch_dispatch_mode(include_infra_modes=False):
 | 
						|
                    skip_reason = "non-infra torch dispatch mode present, this is not supported today in torch.compile"
 | 
						|
                else:
 | 
						|
                    skip_reason = "dynamo tracing is disabled"
 | 
						|
 | 
						|
                log.debug(
 | 
						|
                    "skipping: %s (reason: %s, file: %s)",
 | 
						|
                    frame.f_code.co_name,
 | 
						|
                    skip_reason,
 | 
						|
                    frame.f_code.co_filename,
 | 
						|
                )
 | 
						|
            return None
 | 
						|
 | 
						|
        if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
 | 
						|
            # nametuple constructor
 | 
						|
            return None
 | 
						|
        if config._get_optimize_ddp_mode() == "ddp_optimizer":
 | 
						|
            ddp_module = DistributedDataParallel._get_active_ddp_module()
 | 
						|
            if ddp_module:
 | 
						|
                with compile_lock:
 | 
						|
                    from torch._dynamo.backends.distributed import DDPOptimizer
 | 
						|
 | 
						|
                    ddp_optimizer = DDPOptimizer(
 | 
						|
                        bucket_bytes_cap=ddp_module.bucket_bytes_cap,
 | 
						|
                        backend_compile_fn=self._torchdynamo_orig_callable._torchdynamo_orig_callable,  # type: ignore[attr-defined]
 | 
						|
                    )
 | 
						|
                    assert hasattr(
 | 
						|
                        self._torchdynamo_orig_callable, "_clone_with_backend"
 | 
						|
                    ), "DDPOptimizer only supports callback fns that know how to clone themselves."
 | 
						|
                    hijacked_callback = (
 | 
						|
                        self._torchdynamo_orig_callable._clone_with_backend(
 | 
						|
                            ddp_optimizer.compile_fn,
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
                    return hijacked_callback(
 | 
						|
                        frame, cache_entry, self.hooks, frame_state
 | 
						|
                    )
 | 
						|
 | 
						|
        with compile_lock, _disable_current_modes():
 | 
						|
            # skip=1: skip this frame
 | 
						|
            return self._torchdynamo_orig_callable(
 | 
						|
                frame, cache_entry, self.hooks, frame_state, skip=1
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
def catch_errors_wrapper(
 | 
						|
    callback: ConvertFrameProtocol, hooks: Hooks
 | 
						|
) -> CatchErrorsWrapper:
 | 
						|
    return CatchErrorsWrapper(callback, hooks)
 |