Files
pytorch/torch/_inductor/analysis/profile_analysis.py
2025-09-19 20:09:12 +00:00

819 lines
27 KiB
Python

import json
import logging
import math
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Optional, Union
import torch
from torch._inductor.analysis.device_info import DeviceInfo, lookup_device_info
from torch._inductor.utils import tabulate_2d, zip_dicts
from torch.utils import _pytree as pytree
from torch.utils._ordered_set import OrderedSet
from torch.utils.flop_counter import flop_registry
log = logging.getLogger(__name__)
ATEN_PREFIX = "aten::"
@dataclass
class ProfileEvent:
category: str
key: str
self_device_time_ms: float
# the benchmark is run multiple times and we average the count across all the
# runs. It should be an integer but define a float just in case.
count: float
# adapters convert the json trace into a format that works with flops_counter
ArgsType = tuple[tuple[Any, ...], dict[Any, Any]]
AdapterType = Callable[[tuple[Any, ...], tuple[Any, ...]], ArgsType]
adapters_map: dict[str, AdapterType] = {}
def parse_list(lst: str) -> list[int]:
lst = lst.replace("[", "").replace("]", "")
substrings = lst.split(",")
return [int(substring.strip()) for substring in substrings]
def register_adapter(
aten: Union[str, list[str]],
) -> Callable[
[AdapterType],
AdapterType,
]:
def decorator(func: AdapterType) -> AdapterType:
global _adapters_map
if isinstance(aten, str):
adapters_map[aten] = func
else:
for at in aten:
adapters_map[at] = func
return func
return decorator
@register_adapter(["_slow_conv2d_forward"])
def _slow_conv2d_adapter(
shapes: tuple[Any, ...], concrete: tuple[Any, ...]
) -> tuple[tuple[Any], dict[Any, Any]]:
tmp = list(shapes)
tmp.append(False)
tmp2 = list(concrete)
if len(tmp2) < 5:
raise ParseException("slow conv2d has less than 5 concrete inputs")
tmp2[3] = tmp2[4]
return conv_adapter(tuple(tmp), tuple(tmp2))
@register_adapter(["convolution", "_convolution", "cudnn_convolution"])
def conv_adapter(
shapes: tuple[Any, ...], concrete: tuple[Any, ...]
) -> tuple[tuple[Any], dict[Any, Any]]:
tmp = list(shapes)
if len(tmp) == 4:
transposed = False
elif len(tmp) > 6:
transposed = bool(tmp[6])
tmp[6] = transposed
else:
raise ParseException(f"Convolution has the wrong number of inputs: {len(tmp)}")
kwargs: dict[Any, Any] = {}
if not transposed:
# calculate output shape if not transposed.
def conv_out_dims(x: int, kernel: int, stride: int) -> int:
return (x - kernel) // stride + 1
stride = parse_list(concrete[3])
inp = shapes[0]
w = shapes[1]
out_x_y = [conv_out_dims(*args) for args in zip(inp[2:], w[2:], stride)]
out = [inp[0], w[0]] + out_x_y # we only need the xy values
kwargs["out_val"] = out
return tuple(tmp), kwargs
def default_adapter(
shapes: tuple[Any], concrete: tuple[Any]
) -> tuple[tuple[Any], dict[Any, Any]]:
return shapes, {}
@register_adapter("addmm")
def addmm_adapter(
shapes: tuple[Any], concrete: tuple[Any]
) -> tuple[tuple[Any], dict[Any, Any]]:
tmp = list(shapes)[:3]
return tuple(tmp), {}
@register_adapter("bmm")
def bmm_adapter(
shapes: tuple[Any], concrete: tuple[Any]
) -> tuple[tuple[Any], dict[Any, Any]]:
tmp = list(shapes)
return tuple(tmp[:2]), {}
@register_adapter("baddbmm")
def baddbmm_adapter(
shapes: tuple[Any], concrete: tuple[Any]
) -> tuple[tuple[Any], dict[Any, Any]]:
tmp = list(shapes)[:3]
return tuple(tmp), {}
@register_adapter("mm")
def mm_adapter(
shapes: tuple[Any], concrete: tuple[Any]
) -> tuple[tuple[Any], dict[Any, Any]]:
return shapes, {}
def _parse_kernel_name(name: str) -> Optional[str]:
"""
parse the name of the kernel from the event name.
"""
if name.startswith(ATEN_PREFIX):
return name[len(ATEN_PREFIX) :]
elif "conv" in name:
return "convolution"
elif "addmm" in name:
return "addmm"
elif "bmm" in name:
return "bmm"
elif "baddbmm" in name:
return "baddbmm"
elif "_mm" in name:
return "mm"
else:
return None
def _calculate_flops(event: dict[str, Any]) -> int:
"""
This function has to parse the kernel name, which is error prone. There doesn't seem to be another solution that
will support all the different backends that can generate kernels, so make sure to update this function when new
ops and backends are desired.
"""
name = event["name"]
if "kernel_flop" in event["args"] and event["args"]["kernel_flop"] != 0:
return event["args"]["kernel_flop"]
op_name = _parse_kernel_name(name)
if op_name is None:
return 0
op_obj = getattr(torch.ops.aten, op_name, None)
if op_obj is None or op_obj not in flop_registry:
return 0
flop_function = flop_registry[op_obj]
if "Input Dims" not in event["args"] or "Concrete Inputs" not in event["args"]:
return 0
input_shapes = event["args"]["Input Dims"]
concrete = event["args"]["Concrete Inputs"]
if op_name in adapters_map:
try:
args, kwargs = adapters_map[op_name](input_shapes, concrete)
except ParseException as e:
msg = f"Failed to parse {op_name} with {e}"
log.warning(msg)
return 0
else:
try:
args, kwargs = default_adapter(input_shapes, concrete)
except ParseException as e:
msg = f"Failed to parse {op_name} with {e}"
log.warning(msg)
return 0
return flop_function(*args, **kwargs)
def _get_size_from_string(type_string: str) -> int:
if not hasattr(torch, type_string):
return 1
else:
return getattr(torch, type_string).itemsize
def _default_estimate_gb(event: dict[str, Any]) -> float:
sizes_and_types = zip(event["args"]["Input Dims"], event["args"]["Input type"])
bw = 0
for size, typ in sizes_and_types:
isize = _get_size_from_string(typ)
bw += isize * math.prod(pytree.tree_flatten(size)[0])
return bw / 1e9
def _estimate_gb(event: dict[str, Any]) -> float:
"""
Our best effort to estimate the gb, should be refactored soon with MemoryCounter.
"""
name = event["name"]
if "kernel_num_gb" in event["args"] and event["args"]["kernel_num_gb"] != 0:
return event["args"]["kernel_num_gb"]
if "Input type" not in event["args"] or "Input Dims" not in event["args"]:
return 0
op_name = _parse_kernel_name(name)
if op_name is None:
return _default_estimate_gb(event)
op_obj = getattr(torch.ops.aten, op_name, None)
if op_obj is None:
return _default_estimate_gb(event)
if "Input Dims" not in event["args"] or "Concrete Inputs" not in event["args"]:
return _default_estimate_gb(event)
input_shapes = event["args"]["Input Dims"]
# NOTE these will be refactored into a similar object to FlopCounter soon
def mm_formula(M: int, N: int, K: int, size: int) -> int:
return 2 * (M * K + N * K + M * N) * size
if op_name == "addmm":
add_in_size = math.prod(pytree.tree_flatten(input_shapes[0])[0])
add_type_size = _get_size_from_string(event["args"]["Input type"][0])
M = input_shapes[1][0]
N = input_shapes[1][1]
assert input_shapes[1][1] == input_shapes[2][0]
K = input_shapes[2][1]
mul_type_size = _get_size_from_string(event["args"]["Input type"][1])
return (mm_formula(M, N, K, mul_type_size) + add_in_size * add_type_size) / 1e9
elif op_name == "mm":
M = input_shapes[0][0]
N = input_shapes[0][1]
assert input_shapes[0][1] == input_shapes[1][0]
K = input_shapes[1][1]
type_size = _get_size_from_string(event["args"]["Input type"][0])
return mm_formula(M, N, K, type_size) / 1e9
elif op_name == "baddbmm":
add_in_size = math.prod(pytree.tree_flatten(input_shapes[0])[0])
add_type_size = _get_size_from_string(event["args"]["Input type"][0])
B = input_shapes[0][0]
M = input_shapes[1][1]
N = input_shapes[1][2]
K = input_shapes[2][2]
mul_type_size = _get_size_from_string(event["args"]["Input type"][1])
return (
B * mm_formula(M, N, K, mul_type_size) + add_in_size * add_type_size
) / 1e9
elif op_name == "bmm":
add_in_size = math.prod(pytree.tree_flatten(input_shapes[0])[0])
add_type_size = _get_size_from_string(event["args"]["Input type"][0])
B = input_shapes[0][0]
M = input_shapes[0][1]
N = input_shapes[0][2]
K = input_shapes[1][2]
mul_type_size = _get_size_from_string(event["args"]["Input type"][1])
return (
B * mm_formula(M, N, K, mul_type_size) + add_in_size * add_type_size
) / 1e9
elif op_name in [
"convolution",
"_convolution",
"cudnn_convolution",
"_slow_conv2d_forward",
]:
concrete = event["args"]["Concrete Inputs"]
def conv_out_dim(x: int, kernel: int, stride: int) -> int:
return (x - kernel) // stride + 1
stride = parse_list(
concrete[3] if op_name != "_slow_conv2d_forward" else concrete[4]
)
inp = input_shapes[0]
w = input_shapes[1]
out_x_y = [conv_out_dim(*args) for args in zip(inp[2:], w[2:], stride)]
out = [inp[0], w[0]] + out_x_y
# each output element reads in * w * w chunk
input_reads = out[0] * out[1] * out[2] * out[3] * inp[1] * w[2] * w[3]
# Assume weights are in cache, so only read once
weight_reads = w[0] * w[1] * w[2] * w[3]
return (input_reads + weight_reads) / 1e9
return _default_estimate_gb(event)
def _create_extern_mapping(
data: dict[str, Any],
) -> defaultdict[int, list[dict[str, Any]]]:
"""
compute a mapping from external ids to non kernels, which contain the information we need to estimate flops etc
"""
extern_mapping: defaultdict[int, list[dict[str, Any]]] = defaultdict(list)
for event in data["traceEvents"]:
if (
"args" not in event
or "External id" not in event["args"]
or event["cat"] != "cpu_op"
):
continue
if len(extern_mapping[event["args"]["External id"]]) > 0:
raise ParseException("duplicate external id in event")
extern_mapping[event["args"]["External id"]].append(event)
return extern_mapping
def _augment_trace_helper(data: dict[str, Any]) -> dict[str, Any]:
extern_mapping = _create_extern_mapping(data)
for event in data["traceEvents"]:
if "cat" not in event or event["cat"] != "kernel":
continue
if "args" not in event:
raise ParseException(f"kernel has no args: {event}")
if "External id" not in event["args"]:
event_str = f"kernel has no External id: {event}"
log.info(event_str)
continue
external_op = extern_mapping[event["args"]["External id"]][0]
flops = _calculate_flops(external_op)
if flops == 0:
flops = _calculate_flops(event)
external_op["args"]["kernel_flop"] = flops
external_op["args"]["kernel_num_gb"] = _estimate_gb(external_op)
event["args"]["kernel_flop"] = external_op["args"]["kernel_flop"]
event["args"]["kernel_num_gb"] = external_op["args"]["kernel_num_gb"]
return data
_dtype_map = {
"float": torch.float,
"float32": torch.float,
"int": torch.int,
"int8": torch.int8,
"int16": torch.int16,
"int32": torch.int,
"long": torch.long,
"long int": torch.long,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
"float64": torch.double,
}
@dataclass(frozen=True)
class KernelStats:
flops: int
bw: float
latency: float # us
achieved_flops: float
achieved_bandwidth: float
KernelNameMap = defaultdict[str, OrderedSet[KernelStats]]
@dataclass(frozen=False)
class Device:
name: str
index: int
info: Optional[DeviceInfo]
stats: KernelNameMap
def __repr__(self) -> str:
return f"Device({self.name}, {self.index}): {self.info}"
DeviceMap = dict[int, Device]
Table = tuple[list[str], dict[str, list[str]]]
class JsonProfile:
_devices: DeviceMap
def __init__(
self,
path: str,
benchmark_name: Optional[str] = None,
dtype: Optional[Union[torch.dtype, str]] = None,
):
"""
Convenience class for running common operations on chrome/perfetto json traces.
"""
self.path = path
with open(path) as f:
self.data = json.load(f)
self.events = self.data["traceEvents"]
self.benchmark_name = benchmark_name
if dtype is None:
self.dtype = None
elif isinstance(dtype, torch.dtype):
self.dtype = dtype
else:
if dtype in _dtype_map:
self.dtype = _dtype_map[dtype]
else:
self.dtype = None
self._create_devices()
def convert_dtype(self, event: dict[str, Any]) -> Optional[torch.dtype]:
"""
Each op has a list of dtypes for each input arg. We need to convert these into a single dtype for flop estimation.
Issues:
- converting the strings to concrete torch.dtypes
- What if we have float32, float, float16 all in the inputs? Our choice is to use the largest buffer dtype.
"""
if (
"Input Dims" not in event["args"]
or "Input type" not in event["args"]
or "Concrete Inputs" not in event["args"]
):
if "bfloat16" in event["name"]:
return torch.bfloat16
elif "float16" in event["name"]:
return torch.float16
else:
return None
input_sizes = event["args"]["Input Dims"]
input_types = event["args"]["Input type"]
concrete_inputs = event["args"]["Concrete Inputs"]
assert len(input_sizes) == len(input_types)
assert len(input_types) == len(concrete_inputs)
if len(input_sizes) == 0:
raise RuntimeError("Empty input_sizes and input_types")
biggest_size = 0
biggest_index = 0
for i in range(len(input_sizes)):
if concrete_inputs[i] != "":
# concrete inputs are usually small tensors, so we can just skip
continue
my_size = input_sizes[i]
total_size = sum(parse_list(my_size))
if total_size > biggest_size:
biggest_size = total_size
biggest_index = i
ret_type = input_types[biggest_index]
if ret_type in _dtype_map:
return _dtype_map[ret_type]
raise RuntimeError(f"Unknown type: {ret_type}. Please add to _dtype_map.")
def _create_devices(self) -> None:
self._devices = {}
for dev in self.data["deviceProperties"]:
name = dev["name"]
device_info = lookup_device_info(name)
if device_info is None:
log.info(
"Unsupported device in profile: %s, please consider contributing to _device_mapping.",
name,
)
self._devices[dev["id"]] = Device(
name, dev["id"], device_info, defaultdict(OrderedSet)
)
def calculate_flops(self, event: dict[str, Any]) -> int:
return _calculate_flops(event)
def estimate_gb(self, event: dict[str, Any]) -> float:
return _estimate_gb(event)
def augment_trace(self) -> None:
self.data = _augment_trace_helper(self.data)
def _compute_stats(self) -> None:
"""populates the name -> stats map"""
for event in self.events:
if "cat" not in event or "args" not in event or event["cat"] != "kernel":
continue
if "device" not in event["args"]:
continue
dev_tmp = event["args"]["device"]
if dev_tmp not in self._devices:
continue
dev = self._devices[event["args"]["device"]]
dur = event["dur"] # us
if "kernel_flop" in event["args"]:
assert dur != 0
# 1,000,000us/s * flop / us
op_flops = event["args"]["kernel_flop"] / (dur / 1e6)
else:
op_flops = 0
if "kernel_num_gb" in event["args"]:
assert dur != 0
# 1,000,000us/s * gb = gb/s
op_gbps = event["args"]["kernel_num_gb"] / (dur / 1e6)
else:
op_gbps = 0
if dev.info is not None:
dtype = self.convert_dtype(event) or self.dtype
if dtype is None:
raise RuntimeError(
"dtype is not found on tensor and default dtype is not set"
)
achieved_flops = 100 * op_flops / (1e12 * dev.info.tops[dtype])
achieved_bandwidth = 100 * op_gbps / dev.info.dram_bw_gbs
else:
achieved_flops = 0
achieved_bandwidth = 0
if "name" not in event["args"]:
continue
dev.stats[event["name"]].add(
KernelStats(
flops=op_flops,
bw=op_gbps,
latency=dur,
achieved_bandwidth=achieved_bandwidth,
achieved_flops=achieved_flops,
)
)
def _create_single_table(self, dev: Device) -> Table:
"""Create a table with the devices mapped to indices."""
headers = [
"Kernel Name",
"Kernel Count",
"FLOPS",
"Kernel Reads (GB)",
"Dur (us)",
"Achieved FLOPS %",
"Achieved Bandwidth %",
]
rows: dict[str, list[str]] = {}
def safe_div_format(x: float, y: float) -> str:
if y == 0:
return "0.0"
return f"{x / y:.4f}"
for kernel_name, stats_set in dev.stats.items():
ker_count = 0
flops = 0
flops_count = 0
achieved_flops = 0.0
bw = 0.0
bw_count = 0
achieved_bandwidth = 0.0
latency = 0.0
for stats in stats_set:
if stats.flops != 0:
flops += stats.flops
achieved_flops += stats.achieved_flops
flops_count += 1
if stats.bw != 0:
bw += stats.bw
achieved_bandwidth += stats.achieved_bandwidth
bw_count += 1
latency += stats.latency
ker_count += 1
assert ker_count != 0
rows[kernel_name] = [
str(ker_count),
safe_div_format(flops, flops_count),
safe_div_format(bw, bw_count),
safe_div_format(latency, ker_count),
safe_div_format(achieved_flops, flops_count),
safe_div_format(achieved_bandwidth, bw_count),
]
return headers, rows
def _create_tables(self, devs: DeviceMap) -> dict[int, Table]:
return {idx: self._create_single_table(dev) for idx, dev in devs.items()}
def _combine_tables(
self, table1: Table, table1_name: str, table2: Table, table2_name: str
) -> Table:
new_headers = (
["Kernel Name"]
+ [f"{table1_name} {head}" for head in table1[0][1:]]
+ [f"{table2_name} {head}" for head in table2[0][1:]]
)
t1_length = len(table1[0][1:])
t2_length = len(table2[0][1:])
new_rows = {}
for key, row1, row2 in zip_dicts(
table1[1],
table2[1],
d1_default=["Empty"] * t1_length,
d2_default=["Empty"] * t2_length,
):
assert row1 is not None
assert row2 is not None
new_rows[key] = row1 + row2
return new_headers, new_rows
def report(
self, other: Optional["JsonProfile"] = None, name_limit: int = 40
) -> str:
def create_ret(
table_headers: list[str], table_rows: dict[str, list[str]]
) -> str:
table_flattened = [
[kernel_name[:name_limit], *kernel_vals]
for kernel_name, kernel_vals in table_rows.items()
]
return tabulate_2d(table_flattened, headers=table_headers)
if other is not None:
self._compute_stats()
other._compute_stats()
self_tables = self._create_tables(self._devices)
other_tables = self._create_tables(other._devices)
self_name = (
self.benchmark_name if self.benchmark_name is not None else "Table 1"
)
other_name = (
other.benchmark_name if other.benchmark_name is not None else "Table 2"
)
ret = []
assert self._devices.keys() == other._devices.keys()
for device_idx, t1, t2 in zip_dicts(
self_tables, other_tables, d1_default=None, d2_default=None
):
assert t1 is not None
assert t2 is not None
table_headers, table_rows = self._combine_tables(
t1, self_name, t2, other_name
)
tab_string = create_ret(table_headers, table_rows)
ret.append(f"{self._devices[device_idx]}:\n{tab_string}")
return "\n".join(ret)
self._compute_stats()
self_tables = self._create_tables(self._devices)
ret = []
for idx, table in self_tables.items():
table_headers, table_rows = table
tab_string = create_ret(table_headers, table_rows)
ret.append(f"{self._devices[idx]}:\n{tab_string}")
return "\n".join(ret)
def dump(self, out: str) -> None:
with open(out, "w") as f:
json.dump(self.data, f)
def combine_with(self, other: "JsonProfile") -> "JsonProfile":
"""
Combine this profile with another profile by merging their trace events.
Returns a new JsonProfile object with combined data.
"""
# Create a new combined data structure
combined_data = {
"traceEvents": self.data["traceEvents"] + other.data["traceEvents"],
"deviceProperties": self.data.get("deviceProperties", []),
}
# Merge device properties, avoiding duplicates
other_device_props = other.data.get("deviceProperties", [])
existing_device_ids = OrderedSet(
[dev["id"] for dev in combined_data["deviceProperties"]]
)
for device_prop in other_device_props:
if device_prop["id"] not in existing_device_ids:
combined_data["deviceProperties"].append(device_prop)
# Copy any other top-level properties from the first profile
for key, value in self.data.items():
if key not in combined_data:
combined_data[key] = value
import os
# Create a temporary file to write the combined data
import tempfile
with tempfile.NamedTemporaryFile(
mode="w", suffix=".json", delete=False
) as tmp_file:
json.dump(combined_data, tmp_file)
tmp_path = tmp_file.name
try:
# Create new JsonProfile from the combined data
combined_profile = JsonProfile(
tmp_path,
benchmark_name=f"{self.benchmark_name or 'Profile1'}_+_{other.benchmark_name or 'Profile2'}",
dtype=self.dtype or other.dtype,
)
return combined_profile
finally:
# Clean up temporary file
os.unlink(tmp_path)
class ParseException(RuntimeError):
pass
def main() -> None:
"""
Main function for the profile analysis script.
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--diff",
nargs=5,
metavar=(
"input_file1",
"name1",
"input_file2",
"name2",
"dtype",
),
help="Two json traces to compare with, specified as <file1> <name1> <file2> <name2> <dtype>",
)
parser.add_argument(
"--name_limit",
type=int,
help="the maximum name size in the final report",
)
parser.add_argument(
"--augment_trace",
"-a",
nargs=3,
metavar=("input_file", "output_file", "dtype"),
help="Augment a trace with inductor meta information. Provide input and output file paths.",
)
parser.add_argument(
"--analysis",
nargs=2,
metavar=("input_file", "dtype"),
help="Run analysis on a single trace, specified as <file> <dtype>",
)
parser.add_argument(
"--combine",
nargs="+",
metavar=("input_files", "output_file"),
help="Combine multiple profiles into a single profile by merging trace events. Specify as <input_file1> \
<input_file2> [input_file3 ...] <output_file>. The last argument is the output file, all preceding arguments are \
input files to combine.",
)
args = parser.parse_args()
if args.diff:
p1 = JsonProfile(args.diff[0], args.diff[1], dtype=args.diff[4])
p1.augment_trace()
p2 = JsonProfile(args.diff[2], args.diff[3], dtype=args.diff[4])
p2.augment_trace()
if args.name_limit:
print(p1.report(p2, name_limit=args.name_limit))
else:
print(p1.report(p2))
if args.analysis:
p1 = JsonProfile(
args.analysis[0],
dtype=args.analysis[1],
)
p1.augment_trace()
if args.name_limit:
print(p1.report(name_limit=args.name_limit))
else:
print(p1.report())
if args.augment_trace:
p = JsonProfile(args.augment_trace[0], dtype=args.augment_trace[2])
p.augment_trace()
p.dump(args.augment_trace[1])
if args.combine:
input_files = args.combine[:-1] # All arguments except the last one
output_file = args.combine[-1] # Last argument is the output file
if len(input_files) < 2:
print("Error: At least 2 input files are required for combining")
return
# Load the first profile
combined = JsonProfile(input_files[0], dtype=None)
# Iteratively combine with all other profiles
for input_file in input_files[1:]:
profile = JsonProfile(input_file, dtype=None)
combined = combined.combine_with(profile)
combined.dump(output_file)
print(f"Successfully combined {', '.join(input_files)} into {output_file}")
if __name__ == "__main__":
main()