mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17297 When `torch.load` needs to load a tensor, no matter which device it will be end up being loaded on, it first creates a CPU storage for it of the necessary size. This storage is allocated but it's not "set" yet, hence no data is written to it: it exists in the kernel's memory map, but it's not resident and doesn't take up physical pages. Then, this storage is passed to the `map_location` function (if the parameter is a string, a device or a map, PyTorch builds that function automatically). The default map for CUDA consists effectively in `lambda storage, _: storage.cuda()` (I omitted the code needed to pick the correct device). This creates a GPU storage and copies over the data of the CPU storage. *This step is unnecessary as we're copying uninitialized memory*. (Surprisingly enough, though, it appears the kernel is smart enough that reading from the unpaged CPU memory doesn't cause it to become paged.) Once `map_location` returns a storage residing on the correct target device, `torch.load` resumes reading the file and copying the tensor's content over into the storage. This will overwrite the content that had previously been written to it, which confirms that the above copy was pointless. A way to avoid this useless copy is to just create and return a new empty storage on the target GPU, instead of "transforming" the original one. This does indeed increase the performance: ``` In [5]: torch.save(torch.rand(100, 100, 100), "/tmp/tensor") In [6]: %timeit torch.load("/tmp/tensor", map_location="cuda") 1.55 ms ± 111 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) In [7]: %timeit torch.load("/tmp/tensor", map_location=lambda storage, _: torch.cuda.FloatStorage(storage.size())) 1.03 ms ± 44 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ``` Credit for this diff is shared with adamlerer and fmassa. Differential Revision: D14147673 fbshipit-source-id: a58d4bc0d894ca03a008499334fc2cdd4cc91e9f
583 lines
23 KiB
Python
583 lines
23 KiB
Python
import difflib
|
|
import inspect
|
|
import os
|
|
import io
|
|
import shutil
|
|
import struct
|
|
import sys
|
|
import torch
|
|
import tarfile
|
|
import zipfile
|
|
import tempfile
|
|
import warnings
|
|
from contextlib import closing, contextmanager
|
|
from ._utils import _import_dotted_name
|
|
from ._six import string_classes as _string_classes
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
import pathlib
|
|
|
|
DEFAULT_PROTOCOL = 2
|
|
|
|
LONG_SIZE = struct.Struct('=l').size
|
|
INT_SIZE = struct.Struct('=i').size
|
|
SHORT_SIZE = struct.Struct('=h').size
|
|
|
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
|
|
PROTOCOL_VERSION = 1001
|
|
STORAGE_KEY_SEPARATOR = ','
|
|
|
|
|
|
class SourceChangeWarning(Warning):
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def mkdtemp():
|
|
path = tempfile.mkdtemp()
|
|
yield path
|
|
shutil.rmtree(path)
|
|
|
|
|
|
_package_registry = []
|
|
|
|
|
|
def register_package(priority, tagger, deserializer):
|
|
queue_elem = (priority, tagger, deserializer)
|
|
_package_registry.append(queue_elem)
|
|
_package_registry.sort()
|
|
|
|
|
|
def _cpu_tag(obj):
|
|
if type(obj).__module__ == 'torch':
|
|
return 'cpu'
|
|
|
|
|
|
def _cuda_tag(obj):
|
|
if type(obj).__module__ == 'torch.cuda':
|
|
return 'cuda:' + str(obj.get_device())
|
|
|
|
|
|
def _cpu_deserialize(obj, location):
|
|
if location == 'cpu':
|
|
return obj
|
|
|
|
|
|
def validate_cuda_device(location):
|
|
if isinstance(location, torch.device):
|
|
location = str(location)
|
|
if not isinstance(location, _string_classes):
|
|
raise ValueError("location should be a string or torch.device")
|
|
if location[5:] == '':
|
|
device = 0
|
|
else:
|
|
device = max(int(location[5:]), 0)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise RuntimeError('Attempting to deserialize object on a CUDA '
|
|
'device but torch.cuda.is_available() is False. '
|
|
'If you are running on a CPU-only machine, '
|
|
'please use torch.load with map_location=\'cpu\' '
|
|
'to map your storages to the CPU.')
|
|
if device >= torch.cuda.device_count():
|
|
raise RuntimeError('Attempting to deserialize object on CUDA device '
|
|
'{} but torch.cuda.device_count() is {}. Please use '
|
|
'torch.load with map_location to map your storages '
|
|
'to an existing device.'.format(
|
|
device, torch.cuda.device_count()))
|
|
return device
|
|
|
|
|
|
def _cuda_deserialize(obj, location):
|
|
if location.startswith('cuda'):
|
|
device = validate_cuda_device(location)
|
|
if getattr(obj, "_torch_load_uninitialized", False):
|
|
storage_type = getattr(torch.cuda, type(obj).__name__)
|
|
with torch.cuda.device(device):
|
|
return storage_type(obj.size())
|
|
else:
|
|
return obj.cuda(device)
|
|
|
|
|
|
register_package(10, _cpu_tag, _cpu_deserialize)
|
|
register_package(20, _cuda_tag, _cuda_deserialize)
|
|
|
|
|
|
def location_tag(storage):
|
|
for _, tagger, _ in _package_registry:
|
|
location = tagger(storage)
|
|
if location:
|
|
return location
|
|
raise RuntimeError("don't know how to determine data location of " +
|
|
torch.typename(storage))
|
|
|
|
|
|
def default_restore_location(storage, location):
|
|
for _, _, fn in _package_registry:
|
|
result = fn(storage, location)
|
|
if result is not None:
|
|
return result
|
|
raise RuntimeError("don't know how to restore data location of " +
|
|
torch.typename(storage) + " (tagged with " +
|
|
location + ")")
|
|
|
|
|
|
def normalize_storage_type(storage_type):
|
|
return getattr(torch, storage_type.__name__)
|
|
|
|
|
|
def storage_to_tensor_type(storage):
|
|
storage_type = type(storage)
|
|
module = _import_dotted_name(storage_type.__module__)
|
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
|
|
|
|
|
|
def _with_file_like(f, mode, body):
|
|
"""
|
|
Executes a body function with a file object for f, opening
|
|
it in 'mode' if it is a string filename.
|
|
"""
|
|
new_fd = False
|
|
if isinstance(f, str) or \
|
|
(sys.version_info[0] == 2 and isinstance(f, unicode)) or \
|
|
(sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):
|
|
new_fd = True
|
|
f = open(f, mode)
|
|
try:
|
|
return body(f)
|
|
finally:
|
|
if new_fd:
|
|
f.close()
|
|
|
|
|
|
def _is_compressed_file(f):
|
|
compress_modules = ['gzip']
|
|
try:
|
|
return f.__module__ in compress_modules
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _should_read_directly(f):
|
|
"""
|
|
Checks if f is a file that should be read directly. It should be read
|
|
directly if it is backed by a real file (has a fileno) and is not a
|
|
a compressed file (e.g. gzip)
|
|
"""
|
|
if _is_compressed_file(f):
|
|
return False
|
|
try:
|
|
return f.fileno() >= 0
|
|
except io.UnsupportedOperation:
|
|
return False
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def _check_seekable(f):
|
|
|
|
def raise_err_msg(patterns, e):
|
|
for p in patterns:
|
|
if p in str(e):
|
|
msg = (str(e) + ". You can only torch.load from a file that is seekable." +
|
|
" Please pre-load the data into a buffer like io.BytesIO and" +
|
|
" try to load from it instead.")
|
|
raise type(e)(msg)
|
|
raise e
|
|
|
|
try:
|
|
f.seek(f.tell())
|
|
return True
|
|
except (io.UnsupportedOperation, AttributeError) as e:
|
|
raise_err_msg(["seek", "tell"], e)
|
|
|
|
|
|
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL):
|
|
"""Saves an object to a disk file.
|
|
|
|
See also: :ref:`recommend-saving-models`
|
|
|
|
Args:
|
|
obj: saved object
|
|
f: a file-like object (has to implement write and flush) or a string
|
|
containing a file name
|
|
pickle_module: module used for pickling metadata and objects
|
|
pickle_protocol: can be specified to override the default protocol
|
|
|
|
.. warning::
|
|
If you are using Python 2, torch.save does NOT support StringIO.StringIO
|
|
as a valid file-like object. This is because the write method should return
|
|
the number of bytes written; StringIO.write() does not do this.
|
|
|
|
Please use something like io.BytesIO instead.
|
|
|
|
Example:
|
|
>>> # Save to file
|
|
>>> x = torch.tensor([0, 1, 2, 3, 4])
|
|
>>> torch.save(x, 'tensor.pt')
|
|
>>> # Save to io.BytesIO buffer
|
|
>>> buffer = io.BytesIO()
|
|
>>> torch.save(x, buffer)
|
|
"""
|
|
return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol))
|
|
|
|
|
|
def _save(obj, f, pickle_module, pickle_protocol):
|
|
if sys.version_info[0] == 2:
|
|
import StringIO
|
|
if isinstance(f, StringIO.StringIO):
|
|
msg = ('torch.save received unsupported StringIO.StringIO file object, whose '
|
|
'write method does not return the number of bytes written. '
|
|
'Please use something like io.BytesIO for torch.save instead.')
|
|
raise RuntimeError(msg)
|
|
|
|
import torch.nn as nn
|
|
serialized_container_types = {}
|
|
serialized_storages = {}
|
|
|
|
def persistent_id(obj):
|
|
# FIXME: the docs say that persistent_id should only return a string
|
|
# but torch store returns tuples. This works only in the binary protocol
|
|
# see
|
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module):
|
|
if obj in serialized_container_types:
|
|
return None
|
|
serialized_container_types[obj] = True
|
|
source_file = source = None
|
|
try:
|
|
source_file = inspect.getsourcefile(obj)
|
|
source = inspect.getsource(obj)
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + obj.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return ('module', obj, source_file, source)
|
|
elif torch.is_storage(obj):
|
|
storage_type = normalize_storage_type(type(obj))
|
|
# Offset is always 0, but we keep it for backwards compatibility
|
|
# with the old serialization format (which supported storage views)
|
|
offset = 0
|
|
obj_key = str(obj._cdata)
|
|
location = location_tag(obj)
|
|
serialized_storages[obj_key] = obj
|
|
is_view = obj._cdata != obj._cdata
|
|
if is_view:
|
|
view_metadata = (str(obj._cdata), offset, obj.size())
|
|
else:
|
|
view_metadata = None
|
|
|
|
return ('storage',
|
|
storage_type,
|
|
obj_key,
|
|
location,
|
|
obj.size(),
|
|
view_metadata)
|
|
|
|
return None
|
|
|
|
sys_info = dict(
|
|
protocol_version=PROTOCOL_VERSION,
|
|
little_endian=sys.byteorder == 'little',
|
|
type_sizes=dict(
|
|
short=SHORT_SIZE,
|
|
int=INT_SIZE,
|
|
long=LONG_SIZE,
|
|
),
|
|
)
|
|
|
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
|
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
|
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
|
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
|
|
pickler.persistent_id = persistent_id
|
|
pickler.dump(obj)
|
|
|
|
serialized_storage_keys = sorted(serialized_storages.keys())
|
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
|
|
f.flush()
|
|
for key in serialized_storage_keys:
|
|
serialized_storages[key]._write_file(f, _should_read_directly(f))
|
|
|
|
|
|
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
|
"""Loads an object saved with :func:`torch.save` from a file.
|
|
|
|
:meth:`torch.load` uses Python's unpickling facilities but treats storages,
|
|
which underlie tensors, specially. They are first deserialized on the
|
|
CPU and are then moved to the device they were saved from. If this fails
|
|
(e.g. because the run time system doesn't have certain devices), an exception
|
|
is raised. However, storages can be dynamically remapped to an alternative
|
|
set of devices using the `map_location` argument.
|
|
|
|
If `map_location` is a callable, it will be called once for each serialized
|
|
storage with two arguments: storage and location. The storage argument
|
|
will be the initial deserialization of the storage, residing on the CPU.
|
|
Each serialized storage has a location tag associated with it which
|
|
identifies the device it was saved from, and this tag is the second
|
|
argument passed to map_location. The builtin location tags are `'cpu'` for
|
|
CPU tensors and `'cuda:device_id'` (e.g. `'cuda:2'`) for CUDA tensors.
|
|
`map_location` should return either None or a storage. If `map_location` returns
|
|
a storage, it will be used as the final deserialized object, already moved to
|
|
the right device. Otherwise, :math:`torch.load` will fall back to the default
|
|
behavior, as if `map_location` wasn't specified.
|
|
|
|
If `map_location` is a string, it should be a device tag, where all tensors
|
|
should be loaded.
|
|
|
|
Otherwise, if `map_location` is a dict, it will be used to remap location tags
|
|
appearing in the file (keys), to ones that specify where to put the
|
|
storages (values).
|
|
|
|
User extensions can register their own location tags and tagging and
|
|
deserialization methods using `register_package`.
|
|
|
|
Args:
|
|
f: a file-like object (has to implement read, readline, tell, and seek),
|
|
or a string containing a file name
|
|
map_location: a function, torch.device, string or a dict specifying how to remap storage
|
|
locations
|
|
pickle_module: module used for unpickling metadata and objects (has to
|
|
match the pickle_module used to serialize file)
|
|
pickle_load_args: optional keyword arguments passed over to
|
|
``pickle_module.load`` and ``pickle_module.Unpickler``, e.g.,
|
|
``encoding=...``.
|
|
|
|
.. note::
|
|
When you call :meth:`torch.load()` on a file which contains GPU tensors, those tensors
|
|
will be loaded to GPU by default. You can call `torch.load(.., map_location='cpu')`
|
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
|
|
|
|
.. note::
|
|
In Python 3, when loading files saved by Python 2, you may encounter
|
|
``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``. This is
|
|
caused by the difference of handling in byte strings in Python2 and
|
|
Python 3. You may use extra ``encoding`` keyword argument to specify how
|
|
these objects should be loaded, e.g., ``encoding='latin1'`` decodes them
|
|
to strings using ``latin1`` encoding, and ``encoding='bytes'`` keeps them
|
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
|
|
|
|
Example:
|
|
>>> torch.load('tensors.pt')
|
|
# Load all tensors onto the CPU
|
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
|
|
# Load all tensors onto the CPU, using a function
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
|
|
# Load all tensors onto GPU 1
|
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
|
|
# Map tensors from GPU 1 to GPU 0
|
|
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
|
|
# Load tensor from io.BytesIO object
|
|
>>> with open('tensor.pt', 'rb') as f:
|
|
buffer = io.BytesIO(f.read())
|
|
>>> torch.load(buffer)
|
|
"""
|
|
new_fd = False
|
|
if isinstance(f, str) or \
|
|
(sys.version_info[0] == 2 and isinstance(f, unicode)) or \
|
|
(sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):
|
|
new_fd = True
|
|
f = open(f, 'rb')
|
|
try:
|
|
return _load(f, map_location, pickle_module, **pickle_load_args)
|
|
finally:
|
|
if new_fd:
|
|
f.close()
|
|
|
|
|
|
def _load(f, map_location, pickle_module, **pickle_load_args):
|
|
deserialized_objects = {}
|
|
|
|
if map_location is None:
|
|
restore_location = default_restore_location
|
|
elif isinstance(map_location, dict):
|
|
def restore_location(storage, location):
|
|
location = map_location.get(location, location)
|
|
return default_restore_location(storage, location)
|
|
elif isinstance(map_location, _string_classes):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, map_location)
|
|
elif isinstance(map_location, torch.device):
|
|
def restore_location(storage, location):
|
|
return default_restore_location(storage, str(map_location))
|
|
else:
|
|
def restore_location(storage, location):
|
|
result = map_location(storage, location)
|
|
if result is None:
|
|
result = default_restore_location(storage, location)
|
|
return result
|
|
|
|
def _check_container_source(container_type, source_file, original_source):
|
|
try:
|
|
current_source = inspect.getsource(container_type)
|
|
except Exception: # saving the source is optional, so we can ignore any errors
|
|
warnings.warn("Couldn't retrieve source code for container of "
|
|
"type " + container_type.__name__ + ". It won't be checked "
|
|
"for correctness upon loading.")
|
|
return
|
|
if original_source != current_source:
|
|
if container_type.dump_patches:
|
|
file_name = container_type.__name__ + '.patch'
|
|
diff = difflib.unified_diff(current_source.split('\n'),
|
|
original_source.split('\n'),
|
|
source_file,
|
|
source_file, lineterm="")
|
|
lines = '\n'.join(diff)
|
|
try:
|
|
with open(file_name, 'a+') as f:
|
|
file_size = f.seek(0, 2)
|
|
f.seek(0)
|
|
if file_size == 0:
|
|
f.write(lines)
|
|
elif file_size != len(lines) or f.read() != lines:
|
|
raise IOError
|
|
msg = ("Saved a reverse patch to " + file_name + ". "
|
|
"Run `patch -p0 < " + file_name + "` to revert your "
|
|
"changes.")
|
|
except IOError:
|
|
msg = ("Tried to save a patch, but couldn't create a "
|
|
"writable file " + file_name + ". Make sure it "
|
|
"doesn't exist and your working directory is "
|
|
"writable.")
|
|
else:
|
|
msg = ("you can retrieve the original source code by "
|
|
"accessing the object's source attribute or set "
|
|
"`torch.nn.Module.dump_patches = True` and use the "
|
|
"patch tool to revert the changes.")
|
|
msg = ("source code of class '{}' has changed. {}"
|
|
.format(torch.typename(container_type), msg))
|
|
warnings.warn(msg, SourceChangeWarning)
|
|
|
|
def legacy_load(f):
|
|
deserialized_objects = {}
|
|
|
|
def persistent_load(saved_id):
|
|
if isinstance(saved_id, tuple):
|
|
# Ignore containers that don't have any sources saved
|
|
if all(saved_id[1:]):
|
|
_check_container_source(*saved_id)
|
|
return saved_id[0]
|
|
return deserialized_objects[int(saved_id)]
|
|
|
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
|
|
mkdtemp() as tmpdir:
|
|
|
|
tar.extract('storages', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
|
|
num_storages = pickle_module.load(f, **pickle_load_args)
|
|
for i in range(num_storages):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, location, storage_type = args
|
|
obj = storage_type._new_with_file(f)
|
|
obj = restore_location(obj, location)
|
|
deserialized_objects[key] = obj
|
|
|
|
storage_views = pickle_module.load(f, **pickle_load_args)
|
|
for target_cdata, root_cdata, offset, size in storage_views:
|
|
root = deserialized_objects[root_cdata]
|
|
deserialized_objects[target_cdata] = root[offset:offset + size]
|
|
|
|
tar.extract('tensors', path=tmpdir)
|
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
|
|
num_tensors = pickle_module.load(f, **pickle_load_args)
|
|
for _ in range(num_tensors):
|
|
args = pickle_module.load(f, **pickle_load_args)
|
|
key, storage_id, original_tensor_type = args
|
|
storage = deserialized_objects[storage_id]
|
|
tensor_type = storage_to_tensor_type(storage)
|
|
ndim, = struct.unpack('<i', f.read(4))
|
|
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
|
|
f.read(4)
|
|
size = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
stride = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
|
|
storage_offset, = struct.unpack('<q', f.read(8))
|
|
tensor = tensor_type().set_(storage, storage_offset, size, stride)
|
|
deserialized_objects[key] = tensor
|
|
|
|
pickle_file = tar.extractfile('pickle')
|
|
unpickler = pickle_module.Unpickler(pickle_file, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
return result
|
|
|
|
deserialized_objects = {}
|
|
|
|
def maybe_decode_ascii(bytes_str):
|
|
# When using encoding='bytes' in Py3, some **internal** keys stored as
|
|
# strings in Py2 are loaded as bytes. This function decodes them with
|
|
# ascii encoding, one that Py3 uses by default.
|
|
#
|
|
# NOTE: This should only be used on internal keys (e.g., `typename` and
|
|
# `location` in `persistent_load` below!
|
|
if isinstance(bytes_str, bytes):
|
|
return bytes_str.decode('ascii')
|
|
return bytes_str
|
|
|
|
def persistent_load(saved_id):
|
|
assert isinstance(saved_id, tuple)
|
|
typename = maybe_decode_ascii(saved_id[0])
|
|
data = saved_id[1:]
|
|
|
|
if typename == 'module':
|
|
# Ignore containers that don't have any sources saved
|
|
if all(data[1:]):
|
|
_check_container_source(*data)
|
|
return data[0]
|
|
elif typename == 'storage':
|
|
data_type, root_key, location, size, view_metadata = data
|
|
location = maybe_decode_ascii(location)
|
|
if root_key not in deserialized_objects:
|
|
obj = data_type(size)
|
|
obj._torch_load_uninitialized = True
|
|
deserialized_objects[root_key] = restore_location(obj, location)
|
|
storage = deserialized_objects[root_key]
|
|
if view_metadata is not None:
|
|
view_key, offset, view_size = view_metadata
|
|
if view_key not in deserialized_objects:
|
|
deserialized_objects[view_key] = storage[offset:offset + view_size]
|
|
return deserialized_objects[view_key]
|
|
else:
|
|
return storage
|
|
else:
|
|
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
|
|
|
|
_check_seekable(f)
|
|
f_should_read_directly = _should_read_directly(f)
|
|
|
|
if f_should_read_directly and f.tell() == 0:
|
|
# legacy_load requires that f has fileno()
|
|
# only if offset is zero we can attempt the legacy tar file loader
|
|
try:
|
|
return legacy_load(f)
|
|
except tarfile.TarError:
|
|
if zipfile.is_zipfile(f):
|
|
# .zip is used for torch.jit.save and will throw an un-pickling error here
|
|
raise RuntimeError("{} is a zip archive (did you mean to use torch.jit.load()?)".format(f.name))
|
|
# if not a tarfile, reset file offset and proceed
|
|
f.seek(0)
|
|
|
|
magic_number = pickle_module.load(f, **pickle_load_args)
|
|
if magic_number != MAGIC_NUMBER:
|
|
raise RuntimeError("Invalid magic number; corrupt file?")
|
|
protocol_version = pickle_module.load(f, **pickle_load_args)
|
|
if protocol_version != PROTOCOL_VERSION:
|
|
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
|
|
|
|
_sys_info = pickle_module.load(f, **pickle_load_args)
|
|
unpickler = pickle_module.Unpickler(f, **pickle_load_args)
|
|
unpickler.persistent_load = persistent_load
|
|
result = unpickler.load()
|
|
|
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
|
|
|
|
offset = f.tell() if f_should_read_directly else None
|
|
for key in deserialized_storage_keys:
|
|
assert key in deserialized_objects
|
|
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
|
|
offset = None
|
|
|
|
return result
|