Files
pytorch/caffe2/experiments/operators/sparse_matrix_reshape_op.h
Richard Barnes 29d759948e use irange for loops 2 (#66746)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66746

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D31705361

fbshipit-source-id: 33fd22eb03086d114e2c98e56703e8ec84460268
2021-12-10 04:26:23 -08:00

131 lines
4.2 KiB
C++

/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CAFFE2_OPERATORS_SPARSE_MATRIX_RESHAPE_H_
#define CAFFE2_OPERATORS_SPARSE_MATRIX_RESHAPE_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <class Context>
class SparseMatrixReshapeOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
SparseMatrixReshapeOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {
CAFFE_ENFORCE(
OperatorBase::HasArgument("old_shape"),
"Argument `old_shape` is missing.");
CAFFE_ENFORCE(
OperatorBase::HasArgument("new_shape"),
"Argument `new_shape` is missing.");
vector<int64_t> old_shape =
OperatorBase::GetRepeatedArgument<int64_t>("old_shape");
vector<int64_t> new_shape =
OperatorBase::GetRepeatedArgument<int64_t>("new_shape");
CAFFE_ENFORCE(
old_shape.size() == 2,
"Argument `old_shape` must contain exactly two integers.");
CAFFE_ENFORCE(
new_shape.size() == 2,
"Argument `new_shape` must contain exactly two integers.");
CAFFE_ENFORCE(
old_shape[1] > 0,
"The second dimension in argument `old_shape` must be positive.");
old_stride_ = old_shape[1];
if (old_shape[0] == -1) {
CAFFE_ENFORCE(
new_shape[1] > 0,
"The second dimension in `new_shape` must be positive.");
} else {
CAFFE_ENFORCE(
old_shape[0] > 0,
"The first dimension in `old_shape` must be positive.");
int64_t matrix_size = old_shape[0] * old_shape[1];
if (new_shape[0] == -1) {
CAFFE_ENFORCE(
new_shape[1] > 0,
"Only one dimension in argument `new_shape` can be -1.");
CAFFE_ENFORCE(
matrix_size % new_shape[1] == 0,
"Argument `new_shape` does not agree with `old_shape`.");
} else {
CAFFE_ENFORCE(
new_shape[0] > 0 && (new_shape[1] == -1 || new_shape[1] > 0),
"Dimensions in argument `new_shape` must be positive or -1.");
if (new_shape[1] == -1) {
CAFFE_ENFORCE(
matrix_size % new_shape[0] == 0,
"Argument `new_shape` does not agree with `old_shape`.");
new_shape[1] = matrix_size / new_shape[0];
} else {
CAFFE_ENFORCE(
new_shape[0] * new_shape[1] == matrix_size,
"Argument `new_shape` does not agree with `old_shape`.");
}
}
}
new_stride_ = new_shape[1];
}
bool RunOnDevice() override {
auto& old_col = Input(0);
CAFFE_ENFORCE(old_col.dim() == 1, "Row index tensor must be 1-D.");
auto& old_row = Input(1);
CAFFE_ENFORCE(old_row.dim() == 1, "Column index tensor must be 1-D.");
const auto nnz = old_col.numel();
CAFFE_ENFORCE(
old_row.numel() == nnz,
"Column and row tensors must have the same size.");
auto* new_col = Output(0, {nnz}, at::dtype<int64_t>());
auto* new_row = Output(1, {nnz}, at::dtype<int>());
const auto* old_col_data = old_col.template data<int64_t>();
const auto* old_row_data = old_row.template data<int>();
auto* new_col_data = new_col->template mutable_data<int64_t>();
auto* new_row_data = new_row->template mutable_data<int>();
for (const auto i : c10::irange(nnz)) {
int64_t offset = old_row_data[i] * old_stride_ + old_col_data[i];
new_row_data[i] = offset / new_stride_;
new_col_data[i] = offset % new_stride_;
}
return true;
}
private:
int64_t old_stride_;
int64_t new_stride_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_SPARSE_MATRIX_RESHAPE_H_