Files
pytorch/caffe2/core/blob_serialization.h
Richard Barnes 29d759948e use irange for loops 2 (#66746)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66746

Modified loops in files under fbsource/fbcode/caffe2/ from the format

`for(TYPE var=x0;var<x_max;x++)`

to the format

`for(const auto var: irange(xmax))`

This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.

Test Plan: Sandcastle

Reviewed By: malfet

Differential Revision: D31705361

fbshipit-source-id: 33fd22eb03086d114e2c98e56703e8ec84460268
2021-12-10 04:26:23 -08:00

308 lines
11 KiB
C++

#ifndef CAFFE2_CORE_BLOB_SERIALIZATION_H_
#define CAFFE2_CORE_BLOB_SERIALIZATION_H_
#include <limits>
#include <future>
#include <google/protobuf/repeated_field.h>
#include "caffe2/core/blob.h"
#include "caffe2/core/blob_serializer_base.h"
#include "caffe2/core/tensor.h"
#include <c10/util/irange.h>
#include <c10/util/typeid.h>
#include "caffe2/core/types.h"
#include "caffe2/utils/simple_queue.h"
C10_DECLARE_int(caffe2_tensor_chunk_size);
C10_DECLARE_int(caffe2_max_tensor_serializer_threads);
C10_DECLARE_bool(caffe2_serialize_fp16_as_bytes);
#ifdef _MSC_VER
// It's MSVC, so we just have to guess ... and allow an override
#ifdef FOLLY_ENDIAN_BE
constexpr auto kIsLittleEndian = false;
#else
constexpr auto kIsLittleEndian = true;
#endif
#else
constexpr auto kIsLittleEndian = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__;
#endif
namespace caffe2 {
constexpr auto kTensorBlobType = "Tensor";
// String used to separate chunk id from the blob name when storing in DB
constexpr auto kChunkIdSeparator = "#%";
/**
* Serializes the given blob, if possible. Note that this serialization uses
* the registration mechanism and one has to implement specific serialization
* approaches for specific classes. Acceptor should take care of writing data
* to the actual storage.
*/
TORCH_API void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor);
TORCH_API void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
const BlobSerializationOptions& options);
TORCH_API size_t EstimateSerializedBlobSize(
const Blob& blob,
c10::string_view name,
const BlobSerializationOptions& options);
/**
* @brief Convenience function to serialize a blob to a string.
*
* This is a convenience function to serialize small Blobs that produce
* manageable serialized strings. To serialize big blobs such as
* large sparse tensors, use the fully-functional interface in
* blob_serializer_base.h.
*
* NOTE: this function doesn't do chunking and might break with big tensors.
*/
TORCH_API string SerializeBlob(const Blob& blob, const string& name);
/**
* Deserializes from a string containing either BlobProto or TensorProto. If
* the deserialization fails, the content in the blob should no longer be
* trusted.
*/
TORCH_API void DeserializeBlob(const string& content, Blob* result);
TORCH_API void DeserializeBlob(const BlobProto& proto, Blob* result);
/*
* Get an empty Tensor from the TensorProto given the meta data in proto (data
* type and size of the Tensor) without actually filling in the data.
*
* We need this function because we want to construct a fully initialized Tensor
* in the beginning instead of keeping partially initialized Tensor around the
* process. Consider the case when we have a Tensor that is split into multiple
* protos during serialization, in deserialization, we have to fill the Tensor
* in multiple calls to Deserialize, therefore we need to create a new Tensor
* with the correct size and data type before the call to Deserialize, because
* otherwise we will have to check whether the function call is the first call
* to initialize the underlying Tensor, which makes the function stateful and
* complicated.
*
* The legacy code get away with this problem by passing in a partially
* initialized Tensor and use Resize and mutable_data to set the correct size,
* data type and allocate memory for the Tensor, so the state is encoded in
* these function calls. e.g. mutable_data will allocate memory on the first
* call and it will return a pointer to the allocated memory on later calls.
*/
TORCH_API Tensor EmptyTensorFromProto(const TensorProto& proto);
/**
* @brief TensorSerializer is the serializer for Tensors.
*
* TensorSerializer takes in a blob that contains a Tensor, and serializes it
* into a TensorProto protocol buffer.
*/
class TORCH_API TensorSerializer : public BlobSerializerBase {
public:
TensorSerializer() {}
~TensorSerializer() override {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor,
* otherwise this function produces a fatal error.
*/
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override;
void SerializeWithOptions(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor,
const BlobSerializationOptions& options) override;
void Serialize(
const Tensor& tensor,
const string& name,
TensorProto* proto,
const BlobSerializationOptions& options,
size_t chunkBegin,
int32_t chunkSize);
void Serialize(
const Tensor& tensor,
const string& name,
TensorProto* proto,
size_t chunkBegin,
int32_t chunkSize) {
BlobSerializationOptions options;
Serialize(tensor, name, proto, options, chunkBegin, chunkSize);
}
size_t EstimateSerializedBlobSize(
const void* pointer,
TypeMeta typeMeta,
c10::string_view name,
const BlobSerializationOptions& options) override;
private:
// A utility function to store the device context detauls.
void StoreDeviceDetail(const Tensor& input, TensorProto* proto);
unique_ptr<BaseContext> context_;
};
/**
* @brief TensorDeserializer is the deserializer for Tensors.
*
* The device that the deserialized Tensor will live under is determined by the
* device_detail field. If you want to specify the device of the deserialized
* tensor, change the TensorProto's corresponding fields before calling
* Deserialize.
*/
class TORCH_API TensorDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override;
/* There are cases when a Tensor is split into multiple protos and
* we have to call Deserialize multiple times to get the complete deserialized
* Tensor, each call will fill part of the Tensor given the segment begin and
* end information in proto, therefore we have to pass in the Tensor pointer
* rather than create a new Tensor every time.
*
* Precondition: Tensor must be initialized
*/
void DeserializeToTensor(const TensorProto& proto, Tensor* tensor);
/* Deserialize the proto and return a new Tensor
* This is a utility function that combines EmptyTensorFromProto and
* Deserialize(const TensorProto&, Tensor*);
*/
Tensor Deserialize(const TensorProto& proto);
};
////////////////////////////////////////////////////////////////////////////////
// Implementations
////////////////////////////////////////////////////////////////////////////////
namespace detail {
// Make space for new elements to be copied to the end of the repeated field.
// The new space is not guaranteed to be initialized.
template <typename T>
void ExtendRepeatedField(
google::protobuf::RepeatedField<T>* field,
size_t size) {
field->Reserve(field->size() + size);
#if GOOGLE_PROTOBUF_VERSION >= 3000000
field->AddNAlreadyReserved(size);
#else
// We unfortunately do still need to support old protobuf versions in some
// build configurations.
for (const auto i : c10::irange(size)) {
field->Add(0);
}
#endif
}
template <typename SrcType, typename DstType>
inline void CopyToProtoAsIs(
const size_t size,
const SrcType* src,
google::protobuf::RepeatedField<DstType>* field,
BaseContext* context) {
static_assert(
sizeof(SrcType) == sizeof(DstType),
"The source type and dest type cannot be copied as-is. Did "
"you mean CopyToProtoWithCast?");
ExtendRepeatedField(field, size);
context->template CopyToCPU<SrcType>(
size, src, reinterpret_cast<SrcType*>(field->mutable_data()));
// Make sure that we finish the copy into the protobuf.
context->FinishDeviceComputation();
}
template <typename SrcType, typename DstType>
inline void CopyToProtoWithCast(
const size_t size,
const SrcType* src,
google::protobuf::RepeatedField<DstType>* field,
BaseContext* context) {
// TODO: we are having one unnecessary copy here if the context is already
// CPUContext. Remove it if it is performance critical.
unique_ptr<SrcType[]> buffer(new SrcType[size]);
context->template CopyToCPU<SrcType>(size, src, buffer.get());
context->FinishDeviceComputation();
field->Reserve(size);
for (const auto i : c10::irange(size)) {
field->Add(static_cast<DstType>(buffer[i]));
}
}
template <typename SrcType, typename DstType>
inline void CopyFromProtoAsIs(
const size_t size,
const google::protobuf::RepeatedField<SrcType>& field,
DstType* dst,
BaseContext* context) {
static_assert(
sizeof(SrcType) == sizeof(DstType),
"The source type and dest type cannot be copied as-is. Did "
"you mean CopyFromProtoWithCast?");
CAFFE_ENFORCE_EQ(size, field.size(), "Incorrect proto field size.");
context->template CopyFromCPU<DstType>(
size, reinterpret_cast<const DstType*>(field.data()), dst);
}
template <typename SrcType, typename DstType>
inline void CopyFromProtoWithCast(
const size_t size,
const google::protobuf::RepeatedField<SrcType>& field,
DstType* dst,
BaseContext* context) {
CAFFE_ENFORCE_EQ(size, field.size(), "Incorrect proto field size.");
// TODO: we are having one unnecessary copy here if the context is already
// CPUContext. Remove it if it is performance critical.
unique_ptr<DstType[]> buffer(new DstType[size]);
const SrcType* src = field.data();
for (const auto i : c10::irange(size)) {
buffer[i] = static_cast<DstType>(src[i]);
}
context->template CopyFromCPU<DstType>(size, buffer.get(), dst);
}
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Serialization Helpers
////////////////////////////////////////////////////////////////////////////////
// Converts MessageLite to string while also checking that SerializeAsString
// succeeds. Pass description of class/function of the call if you'd
// like it appended to the error message.
TORCH_API std::string SerializeAsString_EnforceCheck(
const google::protobuf::MessageLite&,
const char* error_location = nullptr);
// Convert BlobProto to string with success checks.
inline std::string SerializeBlobProtoAsString_EnforceCheck(
const BlobProto& blob) {
return SerializeAsString_EnforceCheck(blob, blob.name().c_str());
}
int64_t NumelFromTensorProto(const TensorProto& tensor_proto);
std::vector<int64_t> DimsFromTensorProto(const TensorProto& proto);
TypeMeta GetDataType(const TensorProto& tensor_proto);
std::unique_ptr<BaseContext> ContextFromProto(const TensorProto& tensor_proto);
} // namespace caffe2
#endif // CAFFE2_CORE_BLOB_SERIALIZATION_H_