mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66746 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D31705361 fbshipit-source-id: 33fd22eb03086d114e2c98e56703e8ec84460268
132 lines
3.9 KiB
C++
132 lines
3.9 KiB
C++
/**
|
|
* Copyright (c) 2018-present, Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
|
|
#include "caffe2/contrib/gloo/common.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
#include <gloo/algorithm.h>
|
|
#include <gloo/common/error.h>
|
|
#include <gloo/context.h>
|
|
|
|
namespace caffe2 {
|
|
namespace gloo {
|
|
|
|
template <class Context>
|
|
class ReduceScatterOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
ReduceScatterOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws),
|
|
ws_(ws),
|
|
status_blob_(
|
|
OperatorBase::GetSingleArgument<std::string>("status_blob", "")) {
|
|
if (status_blob_ != "") {
|
|
ws_->CreateBlob(status_blob_);
|
|
}
|
|
}
|
|
|
|
virtual ~ReduceScatterOp() {}
|
|
|
|
bool RunOnDevice() override {
|
|
std::call_once(once_, [&] { initialize(); });
|
|
|
|
// If any parameter has changed in between runs, the initialized
|
|
// algorithm is invalid and cannot be used.
|
|
update(current_);
|
|
CAFFE_ENFORCE(current_ == init_, "Inputs/outputs have changed");
|
|
|
|
try {
|
|
algorithm_->run();
|
|
} catch (::gloo::IoException& ioe) {
|
|
LOG(ERROR) << "Caught gloo IO exception: " << ioe.what();
|
|
if (status_blob_ != "") {
|
|
signalFailure(ws_->GetBlob(status_blob_), ioe);
|
|
return false;
|
|
} else {
|
|
throw;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
protected:
|
|
void initialize() {
|
|
// Store which inputs/outputs this instance initialized with
|
|
update(init_);
|
|
|
|
// Verify inputs == outputs
|
|
CAFFE_ENFORCE_EQ(init_.inputs.size(), init_.outputs.size());
|
|
for (const auto i : c10::irange(init_.inputs.size())) {
|
|
CAFFE_ENFORCE_EQ(init_.inputs[i], init_.outputs[i]);
|
|
}
|
|
|
|
// Verify tensors all have same size
|
|
size_t size = Input(1).numel();
|
|
for (auto i = 2; i < InputSize() - 1; i++) {
|
|
CAFFE_ENFORCE_EQ(Input(i).numel(), size);
|
|
}
|
|
|
|
// Verify tensors all have same type
|
|
TypeMeta meta = Input(1).dtype();
|
|
for (auto i = 2; i < InputSize() - 1; i++) {
|
|
CAFFE_ENFORCE(Input(i).dtype() == meta);
|
|
}
|
|
|
|
initializeHalvingDoubling();
|
|
}
|
|
|
|
void initializeHalvingDoubling();
|
|
|
|
std::once_flag once_;
|
|
std::unique_ptr<::gloo::Algorithm> algorithm_;
|
|
|
|
// Captures the parameters passed to Gloo when first initialized.
|
|
// An instance is updated every time this op runs and is compared
|
|
// to the reference instance for equality. If any parameter has
|
|
// changed from run to run, the initialized algorithm is invalid.
|
|
void update(GlooParameters& params) {
|
|
params.context = OperatorBase::Input<std::shared_ptr<::gloo::Context>>(0);
|
|
params.inputs.resize(InputSize() - 2);
|
|
params.outputs.resize(OutputSize() - 1);
|
|
for (const auto i : c10::irange(params.inputs.size())) {
|
|
params.inputs[i] = Input(i + 1).raw_data();
|
|
params.outputs[i] = Output(i)->raw_mutable_data();
|
|
}
|
|
params.size = Output(0)->numel();
|
|
params.meta = Output(0)->dtype();
|
|
|
|
// Verify recvCountsSize == comm_size
|
|
CAFFE_ENFORCE_EQ(Input(InputSize() - 1).numel(), params.context->size);
|
|
int* recvCounts = (int*)Input(InputSize() - 1).raw_data();
|
|
recvCounts_.assign(recvCounts, recvCounts + Input(InputSize() - 1).numel());
|
|
}
|
|
|
|
GlooParameters init_;
|
|
GlooParameters current_;
|
|
Workspace* ws_;
|
|
std::string status_blob_;
|
|
std::vector<int> recvCounts_;
|
|
};
|
|
|
|
} // namespace gloo
|
|
} // namespace caffe2
|