mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66746 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D31705361 fbshipit-source-id: 33fd22eb03086d114e2c98e56703e8ec84460268
622 lines
17 KiB
C++
622 lines
17 KiB
C++
#include <benchmark/benchmark.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/jit/tensorexpr/analysis.h>
|
|
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
|
|
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
|
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
|
|
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
|
|
#include <torch/csrc/jit/tensorexpr/tensor.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <immintrin.h>
|
|
|
|
namespace te = torch::jit::tensorexpr;
|
|
|
|
namespace {
|
|
class Reduce1D : public benchmark::Fixture {
|
|
public:
|
|
void SetUp(const benchmark::State& state) override {
|
|
at::set_num_threads(1);
|
|
torch::manual_seed(0x12345678);
|
|
M = state.range(0);
|
|
A = torch::randn({M});
|
|
B = torch::zeros({});
|
|
ref = torch::sum(A, {0});
|
|
}
|
|
|
|
void TearDown(benchmark::State& state) override {
|
|
TORCH_CHECK(at::allclose(B, ref, std::sqrt(A.numel()) * 1e-7));
|
|
state.counters["BYTES"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * M * sizeof(float),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
int M;
|
|
at::Tensor A;
|
|
at::Tensor B;
|
|
at::Tensor ref;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, Torch)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
B = torch::sum(A, {0});
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, Torch)->Args({1 << 24});
|
|
|
|
#define VALIDATE(F, A, B) ValidateFunc((F), #F, (A), (B))
|
|
|
|
template <typename Func>
|
|
void ValidateFunc(
|
|
Func func,
|
|
const std::string& func_name,
|
|
at::Tensor& A,
|
|
at::Tensor& B) {
|
|
func(A, B);
|
|
float* pB = B.data_ptr<float>();
|
|
at::Tensor B2 = torch::sum(A, {0});
|
|
float* pB2 = B2.data_ptr<float>();
|
|
int size = A.numel();
|
|
float size_sqrt = std::sqrt(size);
|
|
float natural_noise = size_sqrt * 1e-7;
|
|
if (!torch::allclose(B, B2, natural_noise)) {
|
|
std::ostringstream oss;
|
|
oss << func_name << " failed check: " << std::endl;
|
|
oss << "value: " << B << std::endl;
|
|
;
|
|
oss << "reference: " << B2 << std::endl;
|
|
oss << "threshold: " << natural_noise << std::endl;
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
}
|
|
|
|
static void reduce1d_naive(at::Tensor& A, at::Tensor& B) {
|
|
float* pA = A.data_ptr<float>();
|
|
float* pB = B.data_ptr<float>();
|
|
int size = A.numel();
|
|
TORCH_CHECK(B.numel() == 1);
|
|
*pB = 0.;
|
|
for (const auto i : c10::irange(size)) {
|
|
*pB += pA[i];
|
|
}
|
|
}
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, Naive)(benchmark::State& state) {
|
|
VALIDATE(reduce1d_naive, A, B);
|
|
for (auto _ : state) {
|
|
reduce1d_naive(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, Naive)->Args({1 << 24});
|
|
|
|
static void reduce1d_native_rfactor(at::Tensor& A, at::Tensor& B) {
|
|
float* pA = A.data_ptr<float>();
|
|
float* pB = B.data_ptr<float>();
|
|
int size = A.numel();
|
|
constexpr int kChunkSize = 16;
|
|
TORCH_CHECK(B.numel() == 1);
|
|
TORCH_CHECK(size % kChunkSize == 0);
|
|
*pB = 0.;
|
|
float temp[kChunkSize];
|
|
for (const auto j : c10::irange(kChunkSize)) {
|
|
temp[j] = 0;
|
|
}
|
|
|
|
int chunk_count = size / kChunkSize;
|
|
for (const auto i : c10::irange(chunk_count)) {
|
|
for (const auto j : c10::irange(kChunkSize)) {
|
|
temp[j] += pA[i * kChunkSize + j];
|
|
}
|
|
}
|
|
|
|
for (const auto j : c10::irange(kChunkSize)) {
|
|
*pB += temp[j];
|
|
}
|
|
}
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, NativeRfactor)(benchmark::State& state) {
|
|
VALIDATE(reduce1d_native_rfactor, A, B);
|
|
for (auto _ : state) {
|
|
reduce1d_native_rfactor(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, NativeRfactor)->Args({1 << 24});
|
|
|
|
#ifdef USE_AVX2
|
|
|
|
// x = ( x7, x6, x5, x4, x3, x2, x1, x0 )
|
|
inline float sum_f32x8(__m256 x) {
|
|
// hiQuad = ( x7, x6, x5, x4 )
|
|
const __m128 hiQuad = _mm256_extractf128_ps(x, 1);
|
|
// loQuad = ( x3, x2, x1, x0 )
|
|
const __m128 loQuad = _mm256_castps256_ps128(x);
|
|
// sumQuad = ( x3 + x7, x2 + x6, x1 + x5, x0 + x4 )
|
|
const __m128 sumQuad = _mm_add_ps(loQuad, hiQuad);
|
|
// loDual = ( -, -, x1 + x5, x0 + x4 )
|
|
const __m128 loDual = sumQuad;
|
|
// hiDual = ( -, -, x3 + x7, x2 + x6 )
|
|
const __m128 hiDual = _mm_movehl_ps(sumQuad, sumQuad);
|
|
// sumDual = ( -, -, x1 + x3 + x5 + x7, x0 + x2 + x4 + x6 )
|
|
const __m128 sumDual = _mm_add_ps(loDual, hiDual);
|
|
// lo = ( -, -, -, x0 + x2 + x4 + x6 )
|
|
const __m128 lo = sumDual;
|
|
// hi = ( -, -, -, x1 + x3 + x5 + x7 )
|
|
const __m128 hi = _mm_shuffle_ps(sumDual, sumDual, 0x1);
|
|
// sum = ( -, -, -, x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 )
|
|
const __m128 sum = _mm_add_ss(lo, hi);
|
|
return _mm_cvtss_f32(sum);
|
|
}
|
|
|
|
static void reduce1d_native_vector(at::Tensor& A, at::Tensor& B) {
|
|
float* pA = A.data_ptr<float>();
|
|
float* pB = B.data_ptr<float>();
|
|
int size = A.numel();
|
|
constexpr int kChunkSize = sizeof(__m256) / sizeof(float);
|
|
TORCH_CHECK(B.numel() == 1);
|
|
TORCH_CHECK(size % kChunkSize == 0);
|
|
*pB = 0.;
|
|
__m256 temp;
|
|
temp = _mm256_setzero_ps();
|
|
|
|
int tile_count = size / kChunkSize;
|
|
for (const auto i : c10::irange(tile_count)) {
|
|
__m256 data = _mm256_load_ps(pA + i * kChunkSize);
|
|
temp = _mm256_add_ps(temp, data);
|
|
}
|
|
|
|
float result = sum_f32x8(temp);
|
|
*pB = result;
|
|
}
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, NativeVector)(benchmark::State& state) {
|
|
VALIDATE(reduce1d_native_vector, A, B);
|
|
for (auto _ : state) {
|
|
reduce1d_native_vector(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, NativeVector)->Args({1 << 24});
|
|
|
|
static void reduce1d_native_tiled(at::Tensor& A, at::Tensor& B) {
|
|
static constexpr int kTileSize = 4;
|
|
float* pA = A.data_ptr<float>();
|
|
float* pB = B.data_ptr<float>();
|
|
int size = A.numel();
|
|
constexpr int kChunkSize = sizeof(__m256) / sizeof(float);
|
|
TORCH_CHECK(B.numel() == 1, "Invalid size: ", B.numel(), " != 1");
|
|
TORCH_CHECK(
|
|
size % kChunkSize == 0,
|
|
"Invalid size: ",
|
|
size,
|
|
" % ",
|
|
kChunkSize,
|
|
" ! = 0");
|
|
__m256 t[kTileSize];
|
|
for (const auto j : c10::irange(kTileSize)) {
|
|
t[j] = _mm256_setzero_ps();
|
|
}
|
|
|
|
int tile_count = size / kChunkSize / kTileSize;
|
|
for (int i = 0; i < tile_count; i++) {
|
|
#pragma unroll
|
|
for (int j = 0; j < kTileSize; j++) {
|
|
float* p = pA + (i * kTileSize + j) * kChunkSize;
|
|
__m256 data = _mm256_loadu_ps(p);
|
|
t[j] = _mm256_add_ps(t[j], data);
|
|
}
|
|
}
|
|
|
|
float result = sum_f32x8(t[0]);
|
|
for (const auto j : c10::irange(1, kTileSize)) {
|
|
result += sum_f32x8(t[j]);
|
|
}
|
|
*pB = result;
|
|
}
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, NativeTiled)(benchmark::State& state) {
|
|
VALIDATE(reduce1d_native_tiled, A, B);
|
|
for (auto _ : state) {
|
|
reduce1d_native_tiled(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, NativeTiled)->Args({1 << 24});
|
|
|
|
#endif // USE_AVX2
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, TeNaive)(benchmark::State& state) {
|
|
int M = A.numel();
|
|
|
|
te::BufHandle AP("A", {M}, te::kFloat);
|
|
te::Tensor BT = te::Reduce(
|
|
"reduce_full",
|
|
{{1, "N"}},
|
|
te::Sum(),
|
|
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
|
|
return AP.load(m);
|
|
},
|
|
{{M, "M"}});
|
|
|
|
te::LoopNest loop({BT});
|
|
loop.prepareForCodegen();
|
|
te::StmtPtr s = loop.root_stmt();
|
|
s = te::IRSimplifier::simplify(s);
|
|
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
|
|
|
|
auto func = [&](at::Tensor& A, at::Tensor& B) {
|
|
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
};
|
|
|
|
ValidateFunc(func, "reduce1d_te_naive", A, B);
|
|
for (auto _ : state) {
|
|
func(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, TeNaive)->Args({1 << 24});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, TeSplitTail)(benchmark::State& state) {
|
|
int M = A.numel();
|
|
|
|
te::BufHandle AP("A", {M}, te::kFloat);
|
|
te::Tensor BT = te::Reduce(
|
|
"reduce_full",
|
|
{{1, "N"}},
|
|
te::Sum(),
|
|
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
|
|
return AP.load(m);
|
|
},
|
|
{{M, "M"}});
|
|
|
|
te::LoopNest loop({BT});
|
|
const int kChunkSize = 8;
|
|
|
|
{
|
|
auto const& loops = loop.getLoopStmtsFor(BT);
|
|
te::ForPtr m = loops[1];
|
|
loop.splitWithTail(m, kChunkSize);
|
|
}
|
|
|
|
loop.prepareForCodegen();
|
|
te::StmtPtr s = loop.root_stmt();
|
|
s = te::IRSimplifier::simplify(s);
|
|
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
|
|
|
|
auto func = [&](at::Tensor& A, at::Tensor& B) {
|
|
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
};
|
|
|
|
ValidateFunc(func, "reduce1d_te_naive", A, B);
|
|
for (auto _ : state) {
|
|
func(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, TeSplitTail)->Args({1 << 24});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, TeSplitMask)(benchmark::State& state) {
|
|
int M = A.numel();
|
|
|
|
te::BufHandle AP("A", {M}, te::kFloat);
|
|
te::Tensor BT = te::Reduce(
|
|
"reduce_full",
|
|
{{1, "N"}},
|
|
te::Sum(),
|
|
[&](const te::ExprHandle& n, const te::ExprHandle& m) {
|
|
return AP.load(m);
|
|
},
|
|
{{M, "M"}});
|
|
|
|
te::LoopNest loop({BT});
|
|
const int kChunkSize = 8;
|
|
|
|
{
|
|
auto const& loops = loop.getLoopStmtsFor(BT);
|
|
te::ForPtr m = loops[1];
|
|
loop.splitWithMask(m, kChunkSize);
|
|
}
|
|
|
|
loop.prepareForCodegen();
|
|
te::StmtPtr s = loop.root_stmt();
|
|
s = te::IRSimplifier::simplify(s);
|
|
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
|
|
|
|
auto func = [&](at::Tensor& A, at::Tensor& B) {
|
|
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
};
|
|
|
|
ValidateFunc(func, "reduce1d_te_naive", A, B);
|
|
for (auto _ : state) {
|
|
func(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, TeSplitMask)->Args({1 << 24});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, TeRfactorV1)(benchmark::State& state) {
|
|
int M = A.numel();
|
|
const int kChunkSize = 8;
|
|
TORCH_CHECK(M % kChunkSize == 0);
|
|
|
|
te::BufHandle AP("A", {M}, te::kFloat);
|
|
te::Tensor BT = te::Reduce(
|
|
"reduce_full",
|
|
{},
|
|
te::Sum(),
|
|
[&](const te::ExprHandle& m) { return AP.load(m); },
|
|
{{M, "M"}});
|
|
|
|
te::LoopNest loop({BT});
|
|
te::BufPtr rfac_buf;
|
|
|
|
auto loops = loop.getLoopStmtsFor(BT);
|
|
TORCH_CHECK(loops.size() == 1);
|
|
te::ForPtr mi;
|
|
loop.splitWithMask(loops.at(0), kChunkSize, &mi);
|
|
te::ForPtr mo = loops.at(0);
|
|
|
|
loop.reorderAxis(mo, mi);
|
|
loops = loop.getLoopStmtsFor(BT);
|
|
auto bt_body = loop.getAllWritesToBuf(BT.buf())[1];
|
|
TORCH_CHECK(loop.rfactor(bt_body, loops.at(0), &rfac_buf));
|
|
loop.reorderAxis(loops.at(0), loops.at(1));
|
|
|
|
loops = loop.getAllInnermostLoopsWritingToBuf(rfac_buf);
|
|
TORCH_CHECK(loops.size() == 2);
|
|
loop.vectorize(loops.at(1));
|
|
|
|
loop.prepareForCodegen();
|
|
te::StmtPtr s = loop.root_stmt();
|
|
s = te::IRSimplifier::simplify(s);
|
|
auto cg = CreateCodeGen("llvm_codegen", s, {AP, BT});
|
|
|
|
auto func = [&](at::Tensor& A, at::Tensor& B) {
|
|
cg->call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
};
|
|
|
|
ValidateFunc(func, "reduce1d_te_naive", A, B);
|
|
for (auto _ : state) {
|
|
func(A, B);
|
|
}
|
|
}
|
|
|
|
BENCHMARK_REGISTER_F(Reduce1D, TeRfactorV1)->Args({1 << 24});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce1D, Op)(benchmark::State& state) {
|
|
const int M = A.numel();
|
|
const int kChunkSize = 8;
|
|
|
|
te::BufHandle a("A", {M}, te::kFloat);
|
|
te::Tensor b =
|
|
te::computeSum({a, te::IntList({0}), false}, {}, at::kFloat, at::kCPU);
|
|
te::LoopNest nest({b});
|
|
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
te::ForPtr mi, mo;
|
|
te::BufPtr rf;
|
|
nest.splitWithMask(loops[0], kChunkSize, &mi);
|
|
loops = nest.reorder({loops[0], mi}, {1, 0});
|
|
nest.rfactor(nest.getLoopBodyFor(b), loops[0], &rf);
|
|
nest.reorderAxis(loops[0], loops[1]);
|
|
for (auto const& loop : nest.getAllInnermostLoopsWritingToBuf(rf)) {
|
|
nest.vectorize(loop);
|
|
}
|
|
|
|
nest.prepareForCodegen();
|
|
nest.simplify();
|
|
te::LLVMCodeGen cg(nest.root_stmt(), {a, b});
|
|
|
|
for (auto _ : state) {
|
|
cg.call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce1D, Op)->Args({1 << 24});
|
|
|
|
class Reduce2DCol : public benchmark::Fixture {
|
|
public:
|
|
void SetUp(const benchmark::State& state) override {
|
|
at::set_num_threads(1);
|
|
torch::manual_seed(0x12345678);
|
|
M = state.range(0);
|
|
N = state.range(1);
|
|
A = torch::randn({M, N});
|
|
ref = torch::sum(A, {0});
|
|
B = torch::zeros_like(ref);
|
|
}
|
|
|
|
void TearDown(benchmark::State& state) override {
|
|
TORCH_CHECK(at::allclose(B, ref, std::sqrt(A.numel()) * 1e-5));
|
|
state.counters["BYTES"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * (A.nbytes() + B.nbytes()),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
int M;
|
|
int N;
|
|
at::Tensor A;
|
|
at::Tensor B;
|
|
at::Tensor ref;
|
|
};
|
|
|
|
BENCHMARK_DEFINE_F(Reduce2DCol, Torch)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
B = torch::sum(A, {0});
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce2DCol, Torch)
|
|
->Args({1 << 3, 1 << 21})
|
|
->Args({1 << 6, 1 << 18})
|
|
->Args({1 << 12, 1 << 12});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce2DCol, OpSchedule)(benchmark::State& state) {
|
|
constexpr int kCacheSize = 1 << 12;
|
|
te::BufHandle a("A", {M, N}, te::kFloat);
|
|
te::Tensor b =
|
|
te::computeSum({a, te::IntList({0}), false}, {N}, at::kFloat, at::kCPU);
|
|
te::LoopNest nest({b});
|
|
|
|
auto sch = state.range(2);
|
|
if (sch == 0) {
|
|
} else if (sch == 1) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
nest.reorderAxis(loops[0], loops[1]);
|
|
} else if (sch == 2) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
nest.splitWithTail(loops[0], kCacheSize);
|
|
loops = nest.getLoopStmtsFor(b);
|
|
nest.reorderAxis(loops[1], loops[2]);
|
|
} else if (sch == 3) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
nest.splitWithTail(loops[1], 8);
|
|
loops = nest.getLoopStmtsFor(b);
|
|
nest.reorderAxis(loops[0], loops[1]);
|
|
}
|
|
|
|
nest.prepareForCodegen();
|
|
nest.simplify();
|
|
te::LLVMCodeGen cg(nest.root_stmt(), {a, b});
|
|
for (auto _ : state) {
|
|
cg.call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce2DCol, OpSchedule)
|
|
->Apply( // CustomArgs);
|
|
[](benchmark::internal::Benchmark* b) {
|
|
for (auto sch : {0, 1, 2, 3}) {
|
|
for (auto rows : {3, 6, 12}) {
|
|
auto cols = 24 - rows;
|
|
b->Args({1 << rows, 1 << cols, sch});
|
|
}
|
|
}
|
|
});
|
|
|
|
class Reduce2DRow : public benchmark::Fixture {
|
|
public:
|
|
void SetUp(const benchmark::State& state) override {
|
|
at::set_num_threads(1);
|
|
torch::manual_seed(0x12345678);
|
|
M = state.range(0);
|
|
N = state.range(1);
|
|
A = torch::randn({M, N});
|
|
ref = torch::sum(A, {1});
|
|
B = torch::zeros_like(ref);
|
|
}
|
|
|
|
void TearDown(benchmark::State& state) override {
|
|
TORCH_CHECK(at::allclose(B, ref, std::sqrt(A.numel()) * 1e-4));
|
|
state.counters["BYTES"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * (A.nbytes() + B.nbytes()),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
int M;
|
|
int N;
|
|
at::Tensor A;
|
|
at::Tensor B;
|
|
at::Tensor ref;
|
|
};
|
|
|
|
BENCHMARK_DEFINE_F(Reduce2DRow, Torch)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
B = torch::sum(A, {1});
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce2DRow, Torch)
|
|
->Args({1 << 3, 1 << 21})
|
|
->Args({1 << 6, 1 << 18})
|
|
->Args({1 << 12, 1 << 12})
|
|
->Args({1 << 18, 1 << 6});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce2DRow, Hand)(benchmark::State& state) {
|
|
auto a = A.data_ptr<float>();
|
|
auto b = B.data_ptr<float>();
|
|
constexpr int Mb = 4;
|
|
constexpr int Nb = 4;
|
|
auto fn = [&] {
|
|
for (int m_outer = 0; m_outer < M; m_outer += Mb) {
|
|
float bregs[Mb][Nb] = {0.0f};
|
|
for (int n_outer = 0; n_outer < N; n_outer += Nb) {
|
|
for (const auto m_inner : c10::irange(Mb)) {
|
|
for (const auto n_inner : c10::irange(Nb)) {
|
|
bregs[m_inner][n_inner] +=
|
|
a[(m_outer + m_inner) * N + n_outer + n_inner];
|
|
}
|
|
}
|
|
}
|
|
for (const auto m_inner : c10::irange(Mb)) {
|
|
b[m_outer + m_inner] = 0.f;
|
|
for (const auto n_inner : c10::irange(Nb)) {
|
|
b[m_outer + m_inner] += bregs[m_inner][n_inner];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
for (auto _ : state) {
|
|
fn();
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce2DRow, Hand)->Args({1 << 18, 1 << 6});
|
|
|
|
BENCHMARK_DEFINE_F(Reduce2DRow, OpSchedule)(benchmark::State& state) {
|
|
constexpr int kChunkSize = 8;
|
|
te::BufHandle a("A", {M, N}, te::kFloat);
|
|
te::Tensor b =
|
|
te::computeSum({a, te::IntList({1}), false}, {M}, at::kFloat, at::kCPU);
|
|
te::LoopNest nest({b});
|
|
|
|
auto sch = state.range(2);
|
|
if (sch == 1) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
te::ForPtr mi, mo;
|
|
te::BufPtr rf;
|
|
nest.splitWithMask(loops[1], kChunkSize, &mi);
|
|
loops = nest.reorder({loops[1], mi}, {1, 0});
|
|
TORCH_CHECK(nest.rfactor(nest.getLoopBodyFor(b), loops[0], &rf));
|
|
nest.reorderAxis(loops[0], loops[1]);
|
|
for (auto const& loop : nest.getAllInnermostLoopsWritingToBuf(rf)) {
|
|
nest.vectorize(loop);
|
|
}
|
|
} else if (sch == 2) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
nest.splitWithMask(loops[1], 8);
|
|
nest.splitWithMask(loops[0], 4);
|
|
loops = nest.getLoopStmtsFor(b);
|
|
nest.reorderAxis(loops[1], loops[2]);
|
|
} else if (sch == 3) {
|
|
auto loops = nest.getLoopStmtsFor(b);
|
|
te::ForPtr mi, mo;
|
|
te::BufPtr rf;
|
|
nest.splitWithMask(loops[1], kChunkSize, &mi);
|
|
loops = nest.reorder({loops[1], mi}, {1, 0});
|
|
TORCH_CHECK(nest.rfactor(nest.getLoopBodyFor(b), loops[0], &rf));
|
|
nest.reorderAxis(loops[0], loops[1]);
|
|
te::LoopNest::compressBuffer(rf, nest.root_stmt());
|
|
for (auto const& loop : nest.getAllInnermostLoopsWritingToBuf(rf)) {
|
|
nest.vectorize(loop);
|
|
}
|
|
}
|
|
|
|
nest.prepareForCodegen();
|
|
nest.simplify();
|
|
te::LLVMCodeGen cg(nest.root_stmt(), {a, b});
|
|
|
|
for (auto _ : state) {
|
|
cg.call({A.data_ptr<float>(), B.data_ptr<float>()});
|
|
}
|
|
}
|
|
BENCHMARK_REGISTER_F(Reduce2DRow, OpSchedule)
|
|
->Apply( // CustomArgs);
|
|
[](benchmark::internal::Benchmark* b) {
|
|
for (auto sch : {0, 1, 2, 3}) {
|
|
for (auto rows : {3, 6, 12, 18}) {
|
|
auto cols = 24 - rows;
|
|
b->Args({1 << rows, 1 << cols, sch});
|
|
}
|
|
}
|
|
});
|