Files
pytorch/test/inductor/test_aot_inductor_package.py
Sean McGovern 297805fd8f Typo fixes for "overridden" in comments and function names (#155944)
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944
Approved by: https://github.com/Skylion007
2025-06-14 03:37:38 +00:00

670 lines
24 KiB
Python

# Owner(s): ["module: inductor"]
import copy
import functools
import io
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
import zipfile
from pathlib import Path
from typing import Callable
from parameterized import parameterized_class
import torch
from torch._inductor.codecache import get_kernel_bin_format
from torch._inductor.package import AOTICompiledModel, load_package, package_aoti
from torch._inductor.test_case import TestCase
from torch._inductor.utils import fresh_inductor_cache
from torch.export import Dim
from torch.testing._internal.common_utils import (
IS_FBCODE,
skipIfRocm,
skipIfXpu,
TEST_CUDA,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
def skipif(predicate: Callable[[str, bool], bool], reason: str):
def decorator(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if predicate(self.device, self.package_cpp_only):
self.skipTest(reason)
return func(self, *args, **kwargs)
return wrapper
return decorator
def compile(
model,
args,
kwargs=None,
*,
dynamic_shapes=None,
package_path=None,
inductor_configs=None,
) -> AOTICompiledModel:
ep = torch.export.export(
model,
args,
kwargs,
dynamic_shapes=dynamic_shapes,
strict=False,
)
package_path = torch._inductor.aoti_compile_and_package(
ep, package_path=package_path, inductor_configs=inductor_configs
) # type: ignore[arg-type]
loaded = load_package(package_path)
return loaded
@unittest.skipIf(sys.platform == "darwin", "No CUDA on MacOS")
@parameterized_class(
[
{"device": "cpu", "package_cpp_only": False},
]
+ (
[
# FIXME: AssertionError: AOTInductor compiled library does not exist at
{"device": "cpu", "package_cpp_only": True}
]
if not IS_FBCODE
else []
)
+ (
[
{"device": GPU_TYPE, "package_cpp_only": False},
{"device": GPU_TYPE, "package_cpp_only": True},
]
if sys.platform != "darwin"
else []
),
class_name_func=lambda cls, _, params: f"{cls.__name__}{'Cpp' if params['package_cpp_only'] else ''}_{params['device']}",
)
class TestAOTInductorPackage(TestCase):
def check_model(
self: TestCase,
model,
example_inputs,
inductor_configs=None,
dynamic_shapes=None,
atol=None,
rtol=None,
) -> AOTICompiledModel:
with torch.no_grad():
torch.manual_seed(0)
model = model.to(self.device)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(example_inputs)
expected = ref_model(*ref_inputs)
inductor_configs = inductor_configs or {}
inductor_configs["aot_inductor.package_cpp_only"] = self.package_cpp_only
torch.manual_seed(0)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
compiled_model = compile(
model,
example_inputs,
dynamic_shapes=dynamic_shapes,
inductor_configs=inductor_configs,
package_path=f.name,
)
actual = compiled_model(*example_inputs)
self.assertEqual(actual, expected, atol=atol, rtol=rtol)
return compiled_model
def test_add(self):
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
self.check_model(Model(), example_inputs)
def test_remove_intermediate_files(self):
# For CUDA, generated cpp files contain absolute path to the generated cubin files.
# With the package artifact, that cubin path should be overridden at the run time,
# so removing those intermeidate files in this test to verify that.
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
model = Model()
with torch.no_grad():
torch.manual_seed(0)
model = model.to(self.device)
ref_model = copy.deepcopy(model)
ref_inputs = copy.deepcopy(example_inputs)
expected = ref_model(*ref_inputs)
torch.manual_seed(0)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
ep = torch.export.export(model, example_inputs, strict=True)
with fresh_inductor_cache():
# cubin files are removed when exiting this context
package_path = torch._inductor.aoti_compile_and_package(
ep,
package_path=f.name,
) # type: ignore[arg-type]
loaded = torch._inductor.aoti_load_package(package_path)
actual = loaded(*example_inputs)
self.assertEqual(actual, expected)
def test_linear(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x, y):
return x + self.linear(y)
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
self.check_model(Model(), example_inputs)
@unittest.skipIf(IS_FBCODE, "cmake won't work in fbcode")
@skipIfXpu # build system may be different
def test_compile_after_package(self):
if not self.package_cpp_only:
raise unittest.SkipTest("Only meant to test cpp package")
if shutil.which("cmake") is None:
raise unittest.SkipTest("cmake is not available")
if shutil.which("make") is None:
raise unittest.SkipTest("make is not available")
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x, y):
return x + self.linear(y)
with torch.no_grad():
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
model = Model().to(device=self.device)
expected = model(*example_inputs)
options = {
"aot_inductor.package_cpp_only": self.package_cpp_only,
# Require kernels to be compiled into .o files
"aot_inductor.embed_kernel_binary": True,
}
ep = torch.export.export(model, example_inputs, strict=True)
package_path = torch._inductor.aoti_compile_and_package(
ep, inductor_configs=options
)
with tempfile.TemporaryDirectory() as tmp_dir, zipfile.ZipFile(
package_path, "r"
) as zip_ref:
filenames = zip_ref.namelist()
prefix = filenames[0].split("/")[0]
zip_ref.extractall(tmp_dir)
tmp_path = Path(tmp_dir) / prefix / "data" / "aotinductor" / "model"
self.assertTrue(tmp_path.exists())
if self.device == GPU_TYPE:
kernel_bin = get_kernel_bin_format(self.device)
self.assertTrue(not list(tmp_path.glob(f"*.{kernel_bin}")))
# Check if .cubin.o files exist and use unique kernel names
self.assertTrue(list(tmp_path.glob(f"triton_*.{kernel_bin}.o")))
build_path = tmp_path / "build"
self.assertTrue(not build_path.exists())
# Create a build directory to run cmake
build_path.mkdir()
custom_env = os.environ.copy()
custom_env["CMAKE_PREFIX_PATH"] = str(Path(torch.__file__).parent)
subprocess.run(
["cmake", ".."],
cwd=build_path,
env=custom_env,
)
subprocess.run(["make"], cwd=build_path)
# Check if the .so file was build successfully
so_path = build_path / "libaoti_model.so"
self.assertTrue(so_path.exists())
optimized = torch._export.aot_load(str(so_path), self.device)
actual = optimized(*example_inputs)
self.assertTrue(torch.allclose(actual, expected))
@unittest.skipIf(IS_FBCODE, "cmake won't work in fbcode")
@skipIfRocm # doesn't support multi-arch binary
@skipIfXpu # doesn't support multi-arch binary
def test_compile_after_package_multi_arch(self):
if self.device != GPU_TYPE:
raise unittest.SkipTest("Only meant to test GPU_TYPE")
if not self.package_cpp_only:
raise unittest.SkipTest("Only meant to test cpp package")
if shutil.which("cmake") is None:
raise unittest.SkipTest("cmake is not available")
if shutil.which("make") is None:
raise unittest.SkipTest("make is not available")
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x, y):
return x + self.linear(y)
with torch.no_grad():
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
model = Model().to(device=self.device)
expected = model(*example_inputs)
options = {
"aot_inductor.package_cpp_only": self.package_cpp_only,
# Expect kernel to be embeded in the final binary.
# We will make it the default behavior for the standalone mode.
"aot_inductor.emit_multi_arch_kernel": True,
"aot_inductor.embed_kernel_binary": True,
}
ep = torch.export.export(model, example_inputs)
package_path = torch._inductor.aoti_compile_and_package(
ep, inductor_configs=options
)
with tempfile.TemporaryDirectory() as tmp_dir, zipfile.ZipFile(
package_path, "r"
) as zip_ref:
filenames = zip_ref.namelist()
prefix = filenames[0].split("/")[0]
zip_ref.extractall(tmp_dir)
tmp_path = Path(tmp_dir) / prefix / "data" / "aotinductor" / "model"
self.assertTrue(tmp_path.exists())
# Create a build directory to run cmake
build_path = tmp_path / "build"
build_path.mkdir()
custom_env = os.environ.copy()
custom_env["CMAKE_PREFIX_PATH"] = str(Path(torch.__file__).parent)
subprocess.run(
["cmake", ".."],
cwd=build_path,
env=custom_env,
)
subprocess.run(["make"], cwd=build_path)
# Check if the .so file was build successfully
so_path = build_path / "libaoti_model.so"
self.assertTrue(so_path.exists())
optimized = torch._export.aot_load(str(so_path), self.device)
actual = optimized(*example_inputs)
self.assertTrue(torch.allclose(actual, expected))
def test_metadata(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(10, 10)
def forward(self, x, y):
return x + self.linear(y)
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
metadata = {"dummy": "moo"}
compiled_model = self.check_model(
Model(),
example_inputs,
inductor_configs={"aot_inductor.metadata": metadata},
)
loaded_metadata = compiled_model.get_metadata() # type: ignore[attr-defined]
self.assertEqual(loaded_metadata.get("dummy"), "moo")
def test_bool_input(self):
# Specialize on whichever branch the example input for b is
class Model(torch.nn.Module):
def forward(self, x, b):
if b:
return x * x
else:
return x + x
example_inputs = (torch.randn(3, 3, device=self.device), True)
self.check_model(Model(), example_inputs)
def test_multiple_methods(self):
options = {
"aot_inductor.package": True,
"aot_inductor.package_cpp_only": self.package_cpp_only,
}
class Model1(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, a, b):
return torch.cat([a, b], dim=0)
dim0_a = Dim("dim0_a", min=1, max=10)
dim0_b = Dim("dim0_b", min=1, max=20)
dynamic_shapes = {"a": {0: dim0_a}, "b": {0: dim0_b}}
example_inputs1 = (
torch.randn(2, 4, device=self.device),
torch.randn(3, 4, device=self.device),
)
ep1 = torch.export.export(
Model1(), example_inputs1, dynamic_shapes=dynamic_shapes, strict=True
)
aoti_files1 = torch._inductor.aot_compile(
ep1.module(), example_inputs1, options=options
)
class Model2(torch.nn.Module):
def __init__(self, device):
super().__init__()
self.device = device
def forward(self, x):
t = torch.tensor(x.size(-1), device=self.device, dtype=torch.float)
t = torch.sqrt(t * 3)
return x * t
example_inputs2 = (torch.randn(5, 5, device=self.device),)
ep2 = torch.export.export(Model2(self.device), example_inputs2, strict=True)
aoti_files2 = torch._inductor.aot_compile(
ep2.module(), example_inputs2, options=options
)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
package_path = package_aoti(
f.name, {"model1": aoti_files1, "model2": aoti_files2}
)
loaded1 = load_package(package_path, "model1")
loaded2 = load_package(package_path, "model2")
self.assertEqual(loaded1(*example_inputs1), ep1.module()(*example_inputs1))
self.assertEqual(loaded2(*example_inputs2), ep2.module()(*example_inputs2))
@unittest.skipIf(not TEST_CUDA, "requires cuda")
def test_duplicate_calls(self):
options = {
"aot_inductor.package": True,
}
device = "cuda"
class Model1(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, a, b):
return torch.cat([a, b], dim=0)
dim0_a = Dim("dim0_a", min=1, max=10)
dim0_b = Dim("dim0_b", min=1, max=20)
dynamic_shapes = {"a": {0: dim0_a}, "b": {0: dim0_b}}
example_inputs1 = (
torch.randn(2, 4, device=device),
torch.randn(3, 4, device=device),
)
self.check_model(Model1(), example_inputs1)
ep1 = torch.export.export(
Model1(), example_inputs1, dynamic_shapes=dynamic_shapes, strict=True
)
aoti_files1 = torch._inductor.aot_compile(
ep1.module(), example_inputs1, options=options
)
device = "cpu"
example_inputs2 = (
torch.randn(2, 4, device=device),
torch.randn(3, 4, device=device),
)
ep2 = torch.export.export(
Model1(), example_inputs2, dynamic_shapes=dynamic_shapes, strict=True
)
aoti_files2 = torch._inductor.aot_compile(
ep2.module(), example_inputs2, options=options
)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
package_path = package_aoti(
f.name, {"model1": aoti_files1, "model2": aoti_files2}
)
loaded1 = load_package(package_path, "model1")
loaded2 = load_package(package_path, "model2")
self.assertTrue(
torch.allclose(loaded1(*example_inputs1), ep1.module()(*example_inputs1))
)
self.assertTrue(
torch.allclose(loaded2(*example_inputs2), ep2.module()(*example_inputs2))
)
def test_specified_output_dir(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, a, b):
return torch.cat([a, b], dim=0)
example_inputs = (
torch.randn(2, 4, device=self.device),
torch.randn(3, 4, device=self.device),
)
ep = torch.export.export(Model(), example_inputs, strict=True)
aoti_files = torch._inductor.aot_compile(
ep.module(),
example_inputs,
options={
"aot_inductor.output_path": "tmp_output_",
"aot_inductor.package": True,
"aot_inductor.package_cpp_only": self.package_cpp_only,
},
)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
package_path = package_aoti(f.name, {"model1": aoti_files})
loaded = load_package(package_path, "model1")
self.assertTrue(
torch.allclose(loaded(*example_inputs), ep.module()(*example_inputs))
)
def test_save_buffer(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, a, b):
return torch.cat([a, b], dim=0)
example_inputs = (
torch.randn(2, 4, device=self.device),
torch.randn(3, 4, device=self.device),
)
ep = torch.export.export(Model(), example_inputs, strict=True)
buffer = io.BytesIO()
buffer = torch._inductor.aoti_compile_and_package(ep, package_path=buffer) # type: ignore[arg-type]
for _ in range(2):
loaded = load_package(buffer)
self.assertTrue(
torch.allclose(loaded(*example_inputs), ep.module()(*example_inputs))
)
@skipif(
lambda device, package_cpp_only: package_cpp_only,
"No support for cpp only",
)
def test_package_without_weight(self):
class Model(torch.nn.Module):
def __init__(self, n, k, device):
super().__init__()
self.linear = torch.nn.Linear(k, n, device=device)
def forward(self, a):
return self.linear(a)
M, N, K = 128, 2048, 4096
model = Model(N, K, self.device)
example_inputs = (torch.randn(M, K, device=self.device),)
inductor_configs = {
"always_keep_tensor_constants": True,
"aot_inductor.package_constants_in_so": False,
}
compiled = compile(model, example_inputs, inductor_configs=inductor_configs)
self.assertEqual(
set(compiled.get_constant_fqns()), set(model.state_dict().keys())
)
compiled.load_constants(model.state_dict(), check_full_update=True)
test_inputs = torch.randn(M, K, device=self.device)
expected = model(test_inputs)
output = compiled(test_inputs)
self.assertEqual(expected, output)
@skipif(
lambda device, package_cpp_only: package_cpp_only,
"No support for cpp only",
)
def test_package_user_managed_weight(self):
class Model(torch.nn.Module):
def __init__(self, n, k, device):
super().__init__()
self.linear = torch.nn.Linear(k, n, device=device)
def forward(self, a):
return self.linear(a)
M, N, K = 128, 4096, 4096
model = Model(N, K, self.device)
example_inputs = (torch.randn(M, K, device=self.device),)
inductor_configs = {
"always_keep_tensor_constants": True,
"aot_inductor.package_constants_in_so": False,
}
compiled = compile(model, example_inputs, inductor_configs=inductor_configs)
self.assertEqual(
set(compiled.get_constant_fqns()), set(model.state_dict().keys())
)
compiled.load_constants(
model.state_dict(), check_full_update=True, user_managed=False
)
test_inputs = torch.randn(M, K, device=self.device)
expected = model(test_inputs)
output = compiled(test_inputs)
self.assertEqual(expected, output)
# Let's try to modify the weight in-place, result shouldn't change.
model.linear.weight.data *= 3.7
new_output = compiled(test_inputs)
self.assertEqual(new_output, output)
# Recreate a new model that we will test against user_managed=True
new_compiled = compile(model, example_inputs, inductor_configs=inductor_configs)
new_compiled.load_constants(
model.state_dict(), check_full_update=True, user_managed=True
)
expected = model(test_inputs)
new_output = new_compiled(test_inputs)
self.assertEqual(expected, new_output)
# Try to modify the weight in-place, result should change.
model.linear.weight.data *= 3.7
expected = model(test_inputs)
new_output = new_compiled(test_inputs)
self.assertEqual(new_output, expected)
def test_deepcopy_compiled_model(self):
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, 10, device=self.device),
)
model = Model()
compiled = compile(model, example_inputs)
copmiled_copy = copy.deepcopy(compiled)
expected = model(*example_inputs)
output = compiled(*example_inputs)
output_copy = copmiled_copy(*example_inputs)
self.assertEqual(expected, output)
self.assertEqual(expected, output_copy)
@skipif(
lambda device, package_cpp_only: package_cpp_only,
"No support for cpp only",
)
def test_update_weights(self):
class Model(torch.nn.Module):
def __init__(self, n, k, device):
super().__init__()
self.linear = torch.nn.Linear(k, n, device=device)
def forward(self, a):
return self.linear(a)
M, N, K = 128, 2048, 4096
model = Model(N, K, self.device)
example_inputs = (torch.randn(M, K, device=self.device),)
compiled = self.check_model(model, example_inputs)
new_state_dict = {
"linear.weight": torch.randn(N, K, device=self.device),
"linear.bias": torch.randn(N, device=self.device),
}
model.load_state_dict(new_state_dict)
compiled.load_constants(model.state_dict(), check_full_update=True)
test_inputs = torch.randn(M, K, device=self.device)
expected = model(test_inputs)
output = compiled(test_inputs)
self.assertEqual(expected, output)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_GPU or sys.platform == "darwin":
run_tests(needs="filelock")