Files
pytorch/aten/src/ATen/cpu/vec/vec256/vec256_qint.h
Nicolas De Carli cbc08c8993 Add NEON acceleration for Vectorized<int[8|16|32|64> (#165273)
Summary:
Adding NEON specializations of Vectorized<T> for int8, int16, int32 and int64.

Correcness has been checked using test_ops.py and the comprehensive torch test

operator_benchmark_test.py has been enhanced by adding cases of bitwise operations, boolean ops and integer ops.
The benchmark, which uses the PyTorch API, shows significant enhancements in a wide variety of operations:

Before:

bitwise xor: 779.882us
boolean any: 636.209us
boolean all: 538.621us
integer mul: 304.457us
integer asr: 447.997us

After:

bitwise xor: 680.221us ---> 15% higher throughput
boolean any: 391.468us ---> 63% higher throughput
boolean all: 390.189us ---> 38% higher throughput
integer mul: 193.532us ---> 57% higher throughput
integer asr: 179.929us---> 149% higher throughput

Test Plan:
Correctness:

buck2 test @mode/opt //caffe2/test:test_ops
buck2 test @mode/opt //caffe2/test:torch
buck2 test @mode/opt //caffe2/test/distributed/launcher/fb:fb_run_test

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Differential Revision: D84424638

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165273
Approved by: https://github.com/malfet
2025-10-16 21:35:13 +00:00

1425 lines
48 KiB
C++

#pragma once
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <ATen/native/quantized/AffineQuantizerBase.h>
#include <c10/util/irange.h>
#include <c10/util/qint32.h>
#include <c10/util/qint8.h>
#include <c10/util/quint8.h>
#include <array>
#include <cmath>
// This file defines Vectorized<> for the quantized types.
//
//
// Currently, we simply use these classes as efficient converters between
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
// where doing the arithmetic in full-precision is acceptable (e.g.
// elementwise operators).
//
//
// Conversions are as follows:
// Vectorized<qint8> -> 4x Vectorized<float>
// Vectorized<quint8> -> 4x Vectorized<float>
// Vectorized<qint32> -> 1x Vectorized<float>
//
// The size of the returned float vector is specified by the special
// constexpr function float_num_vecs. The type of the value returned
// from dequantize (and expected as an argument to quantize) is
// specified by float_vec_return_type.
//
// When writing kernels with these vectors, it is expected that floating-
// point operations will be carried out in a loop over
// Vectorized<T>::float_num_vecs iterations.
namespace at::vec {
inline namespace CPU_CAPABILITY {
#if defined(CPU_CAPABILITY_AVX2)
#ifdef _MSC_VER
__declspec(align(64)) struct Vectorizedqi {
protected:
__m256i vals;
#else
struct Vectorizedqi {
protected:
__m256i vals __attribute__((aligned(64)));
#endif
public:
Vectorizedqi() {
vals = _mm256_setzero_si256();
}
Vectorizedqi(__m256i v) : vals(v) {}
operator __m256i() const {
return vals;
}
};
template <typename T>
__m256i pack_saturate_and_clamp(
__m256i first,
__m256i second,
T min_val,
T max_val);
template <>
inline __m256i pack_saturate_and_clamp<int32_t>(
__m256i /*first*/,
__m256i /*second*/,
int32_t /*min_val*/,
int32_t /*max_val*/) {
// This function is for linkage only, will not be used
TORCH_CHECK(false, "pack_saturate_and_clamp<int32_t> is not supported");
}
template <>
inline __m256i pack_saturate_and_clamp<int8_t>(
__m256i first,
__m256i second,
int8_t min_val,
int8_t max_val) {
__m256i packed_and_sat = _mm256_packs_epi16(first, second);
return _mm256_max_epi8(
_mm256_set1_epi8(min_val),
_mm256_min_epi8(packed_and_sat, _mm256_set1_epi8(max_val)));
}
template <>
inline __m256i pack_saturate_and_clamp<uint8_t>(
__m256i first,
__m256i second,
uint8_t min_val,
uint8_t max_val) {
__m256i packed_and_sat = _mm256_packus_epi16(first, second);
return _mm256_max_epu8(
_mm256_set1_epi8(min_val),
_mm256_min_epu8(packed_and_sat, _mm256_set1_epi8(max_val)));
}
template <typename T>
typename std::enable_if_t<
std::is_same_v<T, uint8_t> || std::is_same_v<T, int8_t>,
at::vec::Vectorized<
float>> inline convert_int8_to_float(at::vec::Vectorized<T> src) {
// Note: this function only convert inputs number of elements equal to
// at::vec::Vectorized<float>.size() Only handle first 8*8 bits
__m128i input_128 = _mm256_castsi256_si128(src);
// Convert from 8*uint8/int8 to 8*int32
__m256i input_256_int32;
if constexpr (std::is_same_v<T, uint8_t>)
input_256_int32 = _mm256_cvtepu8_epi32(input_128);
else
input_256_int32 = _mm256_cvtepi8_epi32(input_128);
// Convert from 8*int32 to 8*float
return _mm256_cvtepi32_ps(input_256_int32);
}
template <typename T>
at::vec::Vectorized<T> inline convert_float_to_int8(
at::vec::Vectorized<float> src);
template <>
at::vec::Vectorized<int8_t> inline convert_float_to_int8(
at::vec::Vectorized<float> src) {
// Convert from float32 to int32 with truncation
__m256i x_values_int32 = _mm256_cvttps_epi32(src);
// Convert from int32 to int16 using signed saturation
__m256i xy_packed_v = _mm256_packs_epi32(x_values_int32, x_values_int32);
constexpr auto min_val = std::numeric_limits<int8_t>::min();
constexpr auto max_val = std::numeric_limits<int8_t>::max();
// Convert from int16 to int8 using unsigned saturation
__m256i xyzw_clamped_v = pack_saturate_and_clamp<int8_t>(
xy_packed_v, xy_packed_v, min_val, max_val);
__m256i permute_mask_v =
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
return _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
}
template <>
at::vec::Vectorized<uint8_t> inline convert_float_to_int8(
at::vec::Vectorized<float> src) {
// The type of *_val should be int32_t to ensure correct clamping behavior.
constexpr auto min_val = std::numeric_limits<int32_t>::min();
constexpr auto max_val = std::numeric_limits<int32_t>::max();
__m256 float32_min_val = _mm256_set1_ps(float(min_val));
__m256 float32_max_val = _mm256_set1_ps(float(max_val));
__m256 float32_src = _mm256_max_ps(src, float32_min_val);
float32_src = _mm256_min_ps(float32_src, float32_max_val);
__m256i truncated_src = _mm256_cvttps_epi32(float32_src);
__m128i r1 = _mm256_castsi256_si128(truncated_src);
__m128i mask = _mm_setr_epi8(
0, 4, 8, 12, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
__m128i r1_shuffled = _mm_shuffle_epi8(r1, mask);
__m128i r2 = _mm256_extractf128_si256(truncated_src, 1);
__m128i r2_shuffled = _mm_shuffle_epi8(r2, mask);
__m128i result = _mm_unpacklo_epi32(r1_shuffled, r2_shuffled);
return _mm256_castsi128_si256(result);
}
template <typename T>
__FORCE_INLINE void QuantizeAvx2(
const float* src,
T* dst,
int len,
float inverse_scale,
int64_t zero_point) {
constexpr int VLEN = 8;
constexpr auto min_val = std::numeric_limits<T>::min();
constexpr auto max_val = std::numeric_limits<T>::max();
const __m256i min_v = _mm256_set1_epi32(min_val);
const __m256i max_v = _mm256_set1_epi32(max_val);
// This is the largest int32 value < int32_max exactly representable in float
constexpr int32_t int32_float_max_val =
std::numeric_limits<int32_t>::max() - 127;
int i = 0;
__m256 inverse_scale_v = _mm256_set1_ps(inverse_scale);
// clang-format off
static const __m256i shuffle_mask_v = _mm256_set_epi8(
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0x0c, 0x08, 0x04, 0x00,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0x0c, 0x08, 0x04, 0x00);
// clang-format on
__m256i permute_mask_v =
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
__m256i permute_mask_l8_v =
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
int len_aligned = len / (VLEN * 4) * (VLEN * 4);
for (; i < len_aligned; i += 4 * VLEN) {
// x
__m256 x_vals = _mm256_load_ps(src + i);
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
// If the floating point value is greater than int32_max,
// _mm256_cvtps_epi32 converts them to -ve. Clip at int32_float_max_val to
// Clip at int32_float_max_val to avoid this.
x_transformed_v =
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
// y
__m256 y_vals = _mm256_load_ps(src + i + VLEN);
__m256 y_transformed_v = _mm256_mul_ps(y_vals, inverse_scale_v);
y_transformed_v =
_mm256_min_ps(y_transformed_v, _mm256_set1_ps(int32_float_max_val));
// z
__m256 z_vals = _mm256_load_ps(src + i + 2 * VLEN);
__m256 z_transformed_v = _mm256_mul_ps(z_vals, inverse_scale_v);
z_transformed_v =
_mm256_min_ps(z_transformed_v, _mm256_set1_ps(int32_float_max_val));
// w
__m256 w_vals = _mm256_load_ps(src + i + 3 * VLEN);
__m256 w_transformed_v = _mm256_mul_ps(w_vals, inverse_scale_v);
w_transformed_v =
_mm256_min_ps(w_transformed_v, _mm256_set1_ps(int32_float_max_val));
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
__m256i y_rounded_v = _mm256_cvtps_epi32(y_transformed_v);
__m256i z_rounded_v = _mm256_cvtps_epi32(z_transformed_v);
__m256i w_rounded_v = _mm256_cvtps_epi32(w_transformed_v);
// add zero point
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
y_rounded_v = _mm256_add_epi32(y_rounded_v, _mm256_set1_epi32(zero_point));
z_rounded_v = _mm256_add_epi32(z_rounded_v, _mm256_set1_epi32(zero_point));
w_rounded_v = _mm256_add_epi32(w_rounded_v, _mm256_set1_epi32(zero_point));
__m256i xy_packed_v = _mm256_packs_epi32(x_rounded_v, y_rounded_v);
__m256i zw_packed_v = _mm256_packs_epi32(z_rounded_v, w_rounded_v);
__m256i xyzw_clamped_v =
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
xyzw_clamped_v =
_mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst + i), xyzw_clamped_v);
}
// Additional 8-lane AVX2 version to take advantage when len is smaller
// based on fbgemm::QuantizeAvx2 (https://github.com/pytorch/FBGEMM)
for (; i < len / VLEN * VLEN; i += VLEN) {
__m256 x_vals = _mm256_load_ps(src + i);
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
x_transformed_v =
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
__m256i x_clipped_v =
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, x_rounded_v));
x_clipped_v = _mm256_shuffle_epi8(x_clipped_v, shuffle_mask_v);
x_clipped_v = _mm256_permutevar8x32_epi32(x_clipped_v, permute_mask_l8_v);
_mm_storel_epi64(
reinterpret_cast<__m128i*>(dst + i),
_mm256_castsi256_si128(x_clipped_v));
}
for (; i < len; ++i) {
float transformed = src[i] * inverse_scale;
// Not exactly the same behavior as the vectorized code.
// The vectorized code above always rounds to even in halfway cases
// (https://software.intel.com/en-us/node/523819), but std::nearbyint
// does the same only when the current rounding mode is FE_TONEAREST.
// However, in practice, this should not be a problem because most cases
// use the default rounding mode FE_TONEAREST.
// Note that we cannot implement the same behavior as the vectorized code
// using std::round because it does rounding away from zero in halfway
// cases.
transformed = zero_point + std::nearbyint(transformed);
float clipped =
std::min(std::max(transformed, float(min_val)), float(max_val));
dst[i] = clipped;
}
}
template <>
struct is_vec_specialized_for<c10::qint32> : std::bool_constant<true> {};
template <>
struct Vectorized<c10::qint32> : public Vectorizedqi {
using size_type = int;
static constexpr size_type kSize = Vectorized<int>::size();
static constexpr size_type size() {
return kSize;
}
static constexpr int kFloatNumVecs = kSize / Vectorized<float>::size();
static constexpr int float_num_vecs() {
return kFloatNumVecs;
}
static constexpr int int_num_vecs() {
return 1;
}
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
using value_type = c10::qint32::underlying;
public:
using Vectorizedqi::Vectorizedqi;
Vectorized() {}
Vectorized(__m256i vals_) {
vals = vals_;
}
// Broadcast constructor
Vectorized(const c10::qint32& val) {
value_type uw = val.val_;
vals = _mm256_set1_epi32(uw);
}
void store(void* ptr, int count = size()) const {
if (count != size()) {
memcpy(ptr, &vals, count * sizeof(value_type));
} else {
_mm256_storeu_si256((__m256i*)ptr, vals);
}
}
static Vectorized<c10::qint32> loadu(const void* ptr) {
return Vectorized<c10::qint32>(ptr);
}
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return _mm256_loadu_si256((const __m256i*)tmp_values);
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> /*zero_point*/,
Vectorized<float> scale_zp_premul) const {
__m256 float_vals = _mm256_cvtepi32_ps(vals);
return {vec::fmadd(scale, Vectorized<float>(float_vals), scale_zp_premul)};
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> zero_point) const {
__m256 float_vals = _mm256_cvtepi32_ps(vals);
return {(Vectorized<float>(float_vals) - zero_point) * scale};
}
static Vectorized<c10::qint32> quantize(
const float_vec_return_type& rhs,
float scale,
int32_t zero_point,
float /*inverse_scale*/) {
Vectorized<c10::qint32> retval;
auto rhs_data = (__m256)rhs[0];
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
scale,
zero_point,
(float*)&rhs_data,
(c10::qint32*)&retval.vals,
size());
return retval;
}
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
return _mm256_max_epi32(vals, b.vals);
}
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
return _mm256_min_epi32(vals, b.vals);
}
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::qint32> relu6(
Vectorized<c10::qint32> zero_point,
Vectorized<c10::qint32> q_six) {
return _mm256_min_epi32(
_mm256_max_epi32(vals, zero_point.vals), q_six.vals);
}
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
return {_mm256_sub_epi32(vals, b)};
}
static Vectorized<c10::qint32> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
__m256 multiplier_v = _mm256_set1_ps(multiplier);
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
__m256 scaled = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier_v);
__m256i rounded = _mm256_cvtps_epi32(scaled);
return _mm256_add_epi32(rounded, zero_point_v);
}
private:
// Load from memory constructor
Vectorized(const void* ptr) {
vals = _mm256_loadu_si256((const __m256i*)ptr);
}
};
template <>
Vectorized<c10::qint32> inline maximum(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
return a.maximum(b);
}
template <>
Vectorized<c10::qint32> inline operator*(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
return _mm256_mullo_epi32(a, b);
}
template <>
Vectorized<c10::qint32> inline operator+(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
return _mm256_add_epi32(a, b);
}
/*
* Convert values from int32 back to int8/uint8
*/
template <typename T>
__m256i RequantizeAvx2(
const std::array<Vectorized<c10::qint32>, 4>& inp,
__m256 multiplier,
__m256i zp) {
static_assert(
std::is_same_v<T, int8_t> || std::is_same_v<T, uint8_t>,
"Only int8_t/uint8_t are supported");
constexpr auto min_val = std::numeric_limits<T>::min();
constexpr auto max_val = std::numeric_limits<T>::max();
__m256i permute_mask_v =
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
__m256 x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier);
__m256 y_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[1]), multiplier);
__m256 z_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[2]), multiplier);
__m256 w_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[3]), multiplier);
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
__m256i y_rounded_v = _mm256_cvtps_epi32(y_scaled_v);
__m256i z_rounded_v = _mm256_cvtps_epi32(z_scaled_v);
__m256i w_rounded_v = _mm256_cvtps_epi32(w_scaled_v);
/* Add zero point */
__m256i x_v = _mm256_add_epi32(x_rounded_v, zp);
__m256i y_v = _mm256_add_epi32(y_rounded_v, zp);
__m256i z_v = _mm256_add_epi32(z_rounded_v, zp);
__m256i w_v = _mm256_add_epi32(w_rounded_v, zp);
/* Pack to int16_t and saturate */
__m256i xy_packed_v = _mm256_packs_epi32(x_v, y_v);
__m256i zw_packed_v = _mm256_packs_epi32(z_v, w_v);
__m256i xyzw_clamped_v =
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
/*
* xyzw_clamped_v has results in the following layout so we need to
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7
*/
xyzw_clamped_v = _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
return xyzw_clamped_v;
}
template <>
struct is_vec_specialized_for<c10::qint8> : std::bool_constant<true> {};
template <>
struct Vectorized<c10::qint8> : public Vectorizedqi {
static constexpr int kSize = VECTOR_WIDTH;
static constexpr int size() {
return kSize;
}
static constexpr int kFloatNumVecs = kSize / Vectorized<float>::size();
static constexpr int float_num_vecs() {
return kFloatNumVecs;
}
static constexpr int kIntNumVecs = kSize / Vectorized<int>::size();
static constexpr int int_num_vecs() {
return kIntNumVecs;
}
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
using value_type = typename c10::qint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;
Vectorized() {}
Vectorized(__m256i vals_) {
vals = vals_;
}
// Broadcast constructor
Vectorized(const c10::qint8& val) {
value_type uw = val.val_;
vals = _mm256_set1_epi8(uw);
}
// This is needed because the compiler emits awful code for the default
// constructor for moving the enum
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
#endif
Vectorized(const Vectorized<c10::qint8>& other) : Vectorizedqi(other.vals) {}
C10_CLANG_DIAGNOSTIC_POP()
void store(void* ptr, int count = size()) const {
if (count != size()) {
memcpy(ptr, &vals, count * sizeof(value_type));
} else {
_mm256_storeu_si256((__m256i*)ptr, vals);
}
}
static Vectorized<c10::qint8> loadu(const void* ptr) {
return Vectorized<c10::qint8>(ptr);
}
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return _mm256_loadu_si256((const __m256i*)tmp_values);
}
private:
__m256i cvtepi8_epi32(__m128i epi8_vals) const {
return _mm256_cvtepi8_epi32(epi8_vals);
}
public:
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> /*zero_point*/,
Vectorized<float> scale_neg_zp_premul) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
auto val0 =
vec::fmadd(scale, Vectorized<float>(float_val0), scale_neg_zp_premul);
auto val1 =
vec::fmadd(scale, Vectorized<float>(float_val1), scale_neg_zp_premul);
auto val2 =
vec::fmadd(scale, Vectorized<float>(float_val2), scale_neg_zp_premul);
auto val3 =
vec::fmadd(scale, Vectorized<float>(float_val3), scale_neg_zp_premul);
return {val0, val1, val2, val3};
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> zero_point) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
return {val0, val1, val2, val3};
}
static Vectorized<c10::qint8> quantize(
const float_vec_return_type& rhs,
float /*scale*/,
int32_t zero_point,
float inverse_scale) {
auto* rhs_data = (float*)rhs.data();
int8_t quantized_values[32];
QuantizeAvx2<value_type>(
rhs_data, quantized_values, 32, inverse_scale, zero_point);
return Vectorized<c10::qint8>::loadu(quantized_values);
}
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
return _mm256_max_epi8(vals, b.vals);
}
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
return _mm256_min_epi8(vals, b.vals);
}
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::qint8> relu6(
Vectorized<c10::qint8> zero_point,
Vectorized<c10::qint8> q_six) {
return _mm256_min_epi8(_mm256_max_epi8(vals, zero_point.vals), q_six.vals);
}
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256i int32_val0 = cvtepi8_epi32(int_val0);
__m256i int32_val1 = cvtepi8_epi32(int_val1);
__m256i int32_val2 = cvtepi8_epi32(int_val2);
__m256i int32_val3 = cvtepi8_epi32(int_val3);
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
__m256i int32_b0 = cvtepi8_epi32(int_b0);
__m256i int32_b1 = cvtepi8_epi32(int_b1);
__m256i int32_b2 = cvtepi8_epi32(int_b2);
__m256i int32_b3 = cvtepi8_epi32(int_b3);
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
return {
Vectorized<c10::qint32>(res_0),
Vectorized<c10::qint32>(res_1),
Vectorized<c10::qint32>(res_2),
Vectorized<c10::qint32>(res_3)};
}
static Vectorized<c10::qint8> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
__m256 multiplier_v = _mm256_set1_ps(multiplier);
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
}
private:
// Load from memory constructor
Vectorized(const void* ptr) {
vals = _mm256_loadu_si256((const __m256i*)ptr);
}
};
template <>
Vectorized<c10::qint8> inline maximum(
const Vectorized<c10::qint8>& a,
const Vectorized<c10::qint8>& b) {
return a.maximum(b);
}
template <>
struct is_vec_specialized_for<c10::quint8> : std::bool_constant<true> {};
template <>
struct Vectorized<c10::quint8> : public Vectorizedqi {
static constexpr int kSize = VECTOR_WIDTH;
static constexpr int size() {
return kSize;
}
static constexpr int kFloatNumVecs = kSize / Vectorized<float>::size();
static constexpr int float_num_vecs() {
return kFloatNumVecs;
}
static constexpr int kIntNumVecs = kSize / Vectorized<int>::size();
static constexpr int int_num_vecs() {
return kIntNumVecs;
}
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
using value_type = typename c10::quint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;
Vectorized() {}
Vectorized(__m256i vals_) {
vals = vals_;
}
// Broadcast constructor
Vectorized(const c10::quint8& val) {
value_type uw = val.val_;
vals = _mm256_set1_epi8(uw);
}
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
#endif
Vectorized(const Vectorized<c10::quint8>& other) : Vectorizedqi(other.vals) {}
C10_CLANG_DIAGNOSTIC_POP()
void store(void* ptr, int count = size()) const {
if (count != size()) {
memcpy(ptr, &vals, count * sizeof(value_type));
} else {
_mm256_storeu_si256((__m256i*)ptr, vals);
}
}
static Vectorized<c10::quint8> loadu(const void* ptr) {
return Vectorized<c10::quint8>(ptr);
}
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return _mm256_loadu_si256((const __m256i*)tmp_values);
}
private:
__m256i cvtepu8_epi32(__m128i epu8_vals) const {
return _mm256_cvtepu8_epi32(epu8_vals);
}
public:
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> /*zero_point*/,
Vectorized<float> scale_zp_premul) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
auto val0 =
vec::fmadd(scale, Vectorized<float>(float_val0), scale_zp_premul);
auto val1 =
vec::fmadd(scale, Vectorized<float>(float_val1), scale_zp_premul);
auto val2 =
vec::fmadd(scale, Vectorized<float>(float_val2), scale_zp_premul);
auto val3 =
vec::fmadd(scale, Vectorized<float>(float_val3), scale_zp_premul);
return {val0, val1, val2, val3};
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> zero_point) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
return {val0, val1, val2, val3};
}
static Vectorized<c10::quint8> quantize(
const float_vec_return_type& rhs,
float /*scale*/,
int32_t zero_point,
float inverse_scale) {
auto* rhs_data = (float*)rhs.data();
uint8_t quantized_values[32];
QuantizeAvx2<value_type>(
rhs_data, quantized_values, 32, inverse_scale, zero_point);
return Vectorized<c10::quint8>::loadu(quantized_values);
}
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
return _mm256_max_epu8(vals, b.vals);
}
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
return _mm256_min_epu8(vals, b.vals);
}
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::quint8> relu6(
Vectorized<c10::quint8> zero_point,
Vectorized<c10::quint8> q_six) {
return _mm256_min_epu8(_mm256_max_epu8(vals, zero_point.vals), q_six.vals);
}
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
__m256i int32_val0 = cvtepu8_epi32(int_val0);
__m256i int32_val1 = cvtepu8_epi32(int_val1);
__m256i int32_val2 = cvtepu8_epi32(int_val2);
__m256i int32_val3 = cvtepu8_epi32(int_val3);
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
__m256i int32_b0 = cvtepu8_epi32(int_b0);
__m256i int32_b1 = cvtepu8_epi32(int_b1);
__m256i int32_b2 = cvtepu8_epi32(int_b2);
__m256i int32_b3 = cvtepu8_epi32(int_b3);
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
return {
Vectorized<c10::qint32>(res_0),
Vectorized<c10::qint32>(res_1),
Vectorized<c10::qint32>(res_2),
Vectorized<c10::qint32>(res_3)};
}
static Vectorized<c10::quint8> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
__m256 multiplier_v = _mm256_set1_ps(multiplier);
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
}
private:
// Load from memory constructor
Vectorized(const void* ptr) {
vals = _mm256_loadu_si256((const __m256i*)ptr);
}
};
template <>
Vectorized<c10::quint8> inline maximum(
const Vectorized<c10::quint8>& a,
const Vectorized<c10::quint8>& b) {
return a.maximum(b);
}
#elif !defined(CPU_CAPABILITY_SVE256)
// NOTE: These are low-performance implementations that we fall back on
// if we are not building with AVX2. This may not be an issue, because
// currently for quantization we assume the user has at least AVX512
// installed, so these can simply act as a reference implementation.
//
// If in the future we relax this requirement (AVX2+), we should probably
// revisit these implementations
template <
typename T,
typename float_vec_return_type_,
typename int_vec_return_type_,
int size_>
struct VectorizedQuantizedConverter {
static constexpr int size() {
return size_;
}
static constexpr int float_num_vecs() {
return size_ / Vectorized<float>::size();
}
static constexpr int int_num_vecs() {
return size_ / Vectorized<int>::size();
}
using float_vec_return_type = float_vec_return_type_;
using int_vec_return_type = int_vec_return_type_;
using value_type = typename T::underlying;
std::array<value_type, size_> vals;
VectorizedQuantizedConverter(T val) {
for (const auto i : c10::irange(size())) {
vals[i] = val.val_;
}
}
VectorizedQuantizedConverter(const void* ptr) {
memcpy(vals.data(), ptr, sizeof(value_type) * size());
}
void store(void* ptr, int count = size()) const {
memcpy(ptr, vals.data(), count * sizeof(value_type));
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> zero_point,
Vectorized<float> /*scale_zp_premul*/) const {
float_vec_return_type rv;
for (const auto i : c10::irange(float_num_vecs())) {
float tmp_vals[Vectorized<float>::size()];
for (const auto j : c10::irange(Vectorized<float>::size())) {
tmp_vals[j] = at::native::dequantize_val<T>(
scale[j],
zero_point[j],
T(vals[Vectorized<float>::size() * i + j]));
}
rv[i] = Vectorized<float>(tmp_vals);
}
return rv;
}
float_vec_return_type dequantize(
Vectorized<float> scale,
Vectorized<float> zero_point) const {
Vectorized<float> scale_zp_premul;
return dequantize(scale, zero_point, scale_zp_premul);
}
protected:
VectorizedQuantizedConverter() {}
};
template <>
struct Vectorized<c10::qint32> : public VectorizedQuantizedConverter<
c10::qint32,
std::array<Vectorized<float>, 1>,
std::array<Vectorized<c10::qint32>, 1>,
Vectorized<int>::size()> {
using VectorizedQuantizedConverter::VectorizedQuantizedConverter;
static Vectorized<c10::qint32> loadu(const void* ptr) {
return Vectorized<c10::qint32>(ptr);
}
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return Vectorized<c10::qint32>(tmp_values);
}
static Vectorized<c10::qint32> quantize(
const float_vec_return_type& rhs,
float scale,
int32_t zero_point,
float /*inverse_scale*/) {
std::array<value_type, size()> qvals;
std::array<float, float_num_vecs() * Vectorized<float>::size()> float_vals;
for (const auto i : c10::irange(float_num_vecs())) {
rhs[i].store(&float_vals[i * Vectorized<float>::size()]);
}
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
scale,
zero_point,
float_vals.data(),
(c10::qint32*)qvals.data(),
float_vals.size());
return Vectorized<c10::qint32>::loadu(qvals.data());
}
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::qint32> relu6(
Vectorized<c10::qint32> zero_point,
Vectorized<c10::qint32> q_six) {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
}
return retval;
}
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
int_vec_return_type retval;
for (const auto i : c10::irange(size())) {
retval[0].vals[i] = vals[i] - b.vals[i];
}
return retval;
}
static Vectorized<c10::qint32> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] =
std::nearbyint(static_cast<float>(inp[0].vals[i]) * multiplier) +
zero_point;
}
return retval;
}
};
template <>
Vectorized<c10::qint32> inline maximum(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
return a.maximum(b);
}
template <>
Vectorized<c10::qint32> inline operator*(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
retval.vals[i] = a.vals[i] * b.vals[i];
}
return retval;
}
template <>
Vectorized<c10::qint32> inline operator+(
const Vectorized<c10::qint32>& a,
const Vectorized<c10::qint32>& b) {
Vectorized<c10::qint32> retval;
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
retval.vals[i] = a.vals[i] + b.vals[i];
}
return retval;
}
template <>
struct is_vec_specialized_for<c10::qint8> : std::bool_constant<true> {};
template <>
struct Vectorized<c10::qint8> : public VectorizedQuantizedConverter<
c10::qint8,
std::array<Vectorized<float>, 4>,
std::array<Vectorized<c10::qint32>, 4>,
4 * Vectorized<float>::size()> {
using VectorizedQuantizedConverter::VectorizedQuantizedConverter;
static Vectorized<c10::qint8> loadu(const void* ptr) {
return Vectorized<c10::qint8>(ptr);
}
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return Vectorized<c10::qint8>(tmp_values);
}
static Vectorized<c10::qint8> quantize(
const float_vec_return_type& rhs,
float scale,
int32_t zero_point,
float /*inverse_scale*/) {
std::array<value_type, size()> qvals;
std::array<float, float_num_vecs() * Vectorized<float>::size()> float_vals;
for (const auto i : c10::irange(float_num_vecs())) {
rhs[i].store(&float_vals[i * Vectorized<float>::size()]);
}
at::native::quantize_vec<c10::qint8>(
scale,
zero_point,
float_vals.data(),
(c10::qint8*)qvals.data(),
float_vals.size());
return Vectorized<c10::qint8>::loadu(qvals.data());
}
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
Vectorized<c10::qint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
Vectorized<c10::qint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::qint8> relu6(
Vectorized<c10::qint8> zero_point,
Vectorized<c10::qint8> q_six) {
Vectorized<c10::qint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
}
return retval;
}
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
int_vec_return_type retval;
constexpr int elem_per_int_vec = size() / int_num_vecs();
for (const auto i : c10::irange(int_num_vecs())) {
for (const auto j : c10::irange(elem_per_int_vec)) {
retval[i].vals[j] =
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
}
}
return retval;
}
static Vectorized<c10::qint8> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
constexpr int elem_per_int_vec = size() / int_num_vecs();
constexpr auto min_val = std::numeric_limits<value_type>::min();
constexpr auto max_val = std::numeric_limits<value_type>::max();
Vectorized<c10::qint8> retval;
for (const auto i : c10::irange(int_num_vecs())) {
for (const auto j : c10::irange(elem_per_int_vec)) {
int32_t rounded =
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
zero_point;
retval.vals[i * elem_per_int_vec + j] =
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
}
}
return retval;
}
};
template <>
Vectorized<c10::qint8> inline maximum(
const Vectorized<c10::qint8>& a,
const Vectorized<c10::qint8>& b) {
return a.maximum(b);
}
template <>
struct is_vec_specialized_for<c10::quint8> : std::bool_constant<true> {};
template <>
struct Vectorized<c10::quint8> : public VectorizedQuantizedConverter<
c10::quint8,
std::array<Vectorized<float>, 4>,
std::array<Vectorized<c10::qint32>, 4>,
4 * Vectorized<float>::size()> {
using VectorizedQuantizedConverter::VectorizedQuantizedConverter;
static Vectorized<c10::quint8> loadu(const void* ptr) {
return Vectorized<c10::quint8>(ptr);
}
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
__at_align__ value_type tmp_values[size()];
// Ensure uninitialized memory does not change the output value See
// https://github.com/pytorch/pytorch/issues/32502 for more details. We do
// not initialize arrays to zero using "={0}" because gcc would compile it
// to two instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(size())) {
tmp_values[i] = 0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const value_type*>(ptr),
count * sizeof(value_type));
return Vectorized<c10::quint8>(tmp_values);
}
static Vectorized<c10::quint8> quantize(
const float_vec_return_type& rhs,
float scale,
int32_t zero_point,
float /*inverse_scale*/) {
std::array<value_type, size()> qvals;
std::array<float, float_num_vecs() * Vectorized<float>::size()> float_vals;
for (const auto i : c10::irange(float_num_vecs())) {
rhs[i].store(&float_vals[i * Vectorized<float>::size()]);
}
at::native::quantize_vec<c10::quint8>(
scale,
zero_point,
float_vals.data(),
(c10::quint8*)qvals.data(),
float_vals.size());
return Vectorized<c10::quint8>::loadu(qvals.data());
}
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
Vectorized<c10::quint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
Vectorized<c10::quint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
}
return retval;
}
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
return maximum(zero_point);
}
Vectorized<c10::quint8> relu6(
Vectorized<c10::quint8> zero_point,
Vectorized<c10::quint8> q_six) {
Vectorized<c10::quint8> retval;
for (const auto i : c10::irange(size())) {
retval.vals[i] = std::min<value_type>(
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
}
return retval;
}
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
int_vec_return_type retval;
constexpr int elem_per_int_vec = size() / int_num_vecs();
for (const auto i : c10::irange(int_num_vecs())) {
for (const auto j : c10::irange(elem_per_int_vec)) {
retval[i].vals[j] =
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
}
}
return retval;
}
static Vectorized<c10::quint8> requantize_from_int(
const int_vec_return_type& inp,
float multiplier,
int32_t zero_point) {
constexpr int elem_per_int_vec = size() / int_num_vecs();
constexpr auto min_val = std::numeric_limits<value_type>::min();
constexpr auto max_val = std::numeric_limits<value_type>::max();
Vectorized<c10::quint8> retval;
for (const auto i : c10::irange(int_num_vecs())) {
for (const auto j : c10::irange(elem_per_int_vec)) {
int32_t rounded =
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
zero_point;
retval.vals[i * elem_per_int_vec + j] =
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
}
}
return retval;
}
};
template <>
Vectorized<c10::quint8> inline maximum(
const Vectorized<c10::quint8>& a,
const Vectorized<c10::quint8>& b) {
return a.maximum(b);
}
#endif // if defined(CPU_CAPABILITY_AVX2)
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vget_low_s8(src);
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
return std::make_pair(
Vectorized<float>(vcvtq_f32_s32(s32x4_lo)),
Vectorized<float>(vcvtq_f32_s32(s32x4_hi)));
}
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<uint8_t> src) {
auto u8x8 = vld1_u8(src.operator const uint8_t*());
auto u16x8 = vmovl_u8(u8x8);
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
return std::make_pair(
Vectorized<float>(vcvtq_f32_u32(u32x4_lo)),
Vectorized<float>(vcvtq_f32_u32(u32x4_hi)));
}
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vget_low_s8(src);
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
return Vectorized<float>(vcvtq_f32_s32(s32x4_lo));
}
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<uint8_t> src) {
auto u8x8 = vld1_u8(src.operator const uint8_t*());
auto u16x8 = vmovl_u8(u8x8);
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
return Vectorized<float>(vcvtq_f32_u32(u32x4_lo));
}
#endif
} // namespace CPU_CAPABILITY
} // namespace at::vec