mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Follow up to @ezyang's PR #153020 , but better uses PEP621 to reduce redundant fields and pass through metadata better to uv, setuptools, poetry and other tooling. * Enables modern tooling like uv sync and better support for tools like poetry. * Also allows us to set project wide settings that are respected by linters and IDE (in this example we are able centralize the minimum supported python version). * Currently most of the values are dynamically fetched from setuptools, eventually we can migrate all the statically defined values to pyproject.toml and they will be autopopulated in the setuptool arguments. * This controls what additional metadata shows up on PyPi . Special URL Names are listed here for rendering on pypi: https://packaging.python.org/en/latest/specifications/well-known-project-urls/#well-known-labels These also clearly shows us what fields will need to be migrated to pyproject.toml over time from setup.py per #152276. Static fields be fairly easy to migrate, the dynamically built ones like requirements are a bit more challenging. Without this, `uv sync` complains: ``` error: No `project` table found in: `pytorch/pyproject.toml` ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/153055 Approved by: https://github.com/ezyang
1335 lines
45 KiB
Python
1335 lines
45 KiB
Python
# Welcome to the PyTorch setup.py.
|
|
# Environment variables you are probably interested in:
|
|
#
|
|
# DEBUG
|
|
# build with -O0 and -g (debug symbols)
|
|
#
|
|
# REL_WITH_DEB_INFO
|
|
# build with optimizations and -g (debug symbols)
|
|
#
|
|
# USE_CUSTOM_DEBINFO="path/to/file1.cpp;path/to/file2.cpp"
|
|
# build with debug info only for specified files
|
|
#
|
|
# MAX_JOBS
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# USE_CUDA=0
|
|
# disables CUDA build
|
|
#
|
|
# CFLAGS
|
|
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
|
|
# which we have faithfully adhered to in our build system is that CFLAGS
|
|
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
|
|
# default behavior of autogoo and cmake build systems.)
|
|
#
|
|
# A specific flag that can be used is
|
|
# -DHAS_TORCH_SHOW_DISPATCH_TRACE
|
|
# build with dispatch trace that can be enabled with
|
|
# TORCH_SHOW_DISPATCH_TRACE=1 at runtime.
|
|
#
|
|
# CC
|
|
# the C/C++ compiler to use
|
|
#
|
|
# Environment variables for feature toggles:
|
|
#
|
|
# DEBUG_CUDA=1
|
|
# if used in conjunction with DEBUG or REL_WITH_DEB_INFO, will also
|
|
# build CUDA kernels with -lineinfo --source-in-ptx. Note that
|
|
# on CUDA 12 this may cause nvcc to OOM, so this is disabled by default.
|
|
|
|
# USE_CUDNN=0
|
|
# disables the cuDNN build
|
|
#
|
|
# USE_CUSPARSELT=0
|
|
# disables the cuSPARSELt build
|
|
#
|
|
# USE_CUDSS=0
|
|
# disables the cuDSS build
|
|
#
|
|
# USE_CUFILE=0
|
|
# disables the cuFile build
|
|
#
|
|
# USE_FBGEMM=0
|
|
# disables the FBGEMM build
|
|
#
|
|
# USE_KINETO=0
|
|
# disables usage of libkineto library for profiling
|
|
#
|
|
# USE_NUMPY=0
|
|
# disables the NumPy build
|
|
#
|
|
# BUILD_TEST=0
|
|
# disables the test build
|
|
#
|
|
# USE_MKLDNN=0
|
|
# disables use of MKLDNN
|
|
#
|
|
# USE_MKLDNN_ACL
|
|
# enables use of Compute Library backend for MKLDNN on Arm;
|
|
# USE_MKLDNN must be explicitly enabled.
|
|
#
|
|
# MKLDNN_CPU_RUNTIME
|
|
# MKL-DNN threading mode: TBB or OMP (default)
|
|
#
|
|
# USE_STATIC_MKL
|
|
# Prefer to link with MKL statically - Unix only
|
|
# USE_ITT=0
|
|
# disable use of Intel(R) VTune Profiler's ITT functionality
|
|
#
|
|
# USE_NNPACK=0
|
|
# disables NNPACK build
|
|
#
|
|
# USE_DISTRIBUTED=0
|
|
# disables distributed (c10d, gloo, mpi, etc.) build
|
|
#
|
|
# USE_TENSORPIPE=0
|
|
# disables distributed Tensorpipe backend build
|
|
#
|
|
# USE_GLOO=0
|
|
# disables distributed gloo backend build
|
|
#
|
|
# USE_MPI=0
|
|
# disables distributed MPI backend build
|
|
#
|
|
# USE_SYSTEM_NCCL=0
|
|
# disables use of system-wide nccl (we will use our submoduled
|
|
# copy in third_party/nccl)
|
|
#
|
|
# USE_OPENMP=0
|
|
# disables use of OpenMP for parallelization
|
|
#
|
|
# USE_FLASH_ATTENTION=0
|
|
# disables building flash attention for scaled dot product attention
|
|
#
|
|
# USE_MEM_EFF_ATTENTION=0
|
|
# disables building memory efficient attention for scaled dot product attention
|
|
#
|
|
# BUILD_BINARY
|
|
# enables the additional binaries/ build
|
|
#
|
|
# ATEN_AVX512_256=TRUE
|
|
# ATen AVX2 kernels can use 32 ymm registers, instead of the default 16.
|
|
# This option can be used if AVX512 doesn't perform well on a machine.
|
|
# The FBGEMM library also uses AVX512_256 kernels on Xeon D processors,
|
|
# but it also has some (optimized) assembly code.
|
|
#
|
|
# PYTORCH_BUILD_VERSION
|
|
# PYTORCH_BUILD_NUMBER
|
|
# specify the version of PyTorch, rather than the hard-coded version
|
|
# in this file; used when we're building binaries for distribution
|
|
#
|
|
# TORCH_CUDA_ARCH_LIST
|
|
# specify which CUDA architectures to build for.
|
|
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
|
|
# These are not CUDA versions, instead, they specify what
|
|
# classes of NVIDIA hardware we should generate PTX for.
|
|
#
|
|
# TORCH_XPU_ARCH_LIST
|
|
# specify which XPU architectures to build for.
|
|
# ie `TORCH_XPU_ARCH_LIST="ats-m150,lnl-m"`
|
|
#
|
|
# PYTORCH_ROCM_ARCH
|
|
# specify which AMD GPU targets to build for.
|
|
# ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"`
|
|
#
|
|
# ONNX_NAMESPACE
|
|
# specify a namespace for ONNX built here rather than the hard-coded
|
|
# one in this file; needed to build with other frameworks that share ONNX.
|
|
#
|
|
# BLAS
|
|
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set
|
|
# then the build will fail if the requested BLAS is not found, otherwise
|
|
# the BLAS will be chosen based on what is found on your system.
|
|
#
|
|
# MKL_THREADING
|
|
# MKL threading mode: SEQ, TBB or OMP (default)
|
|
#
|
|
# USE_ROCM_KERNEL_ASSERT=1
|
|
# Enable kernel assert in ROCm platform
|
|
#
|
|
# Environment variables we respect (these environment variables are
|
|
# conventional and are often understood/set by other software.)
|
|
#
|
|
# CUDA_HOME (Linux/OS X)
|
|
# CUDA_PATH (Windows)
|
|
# specify where CUDA is installed; usually /usr/local/cuda or
|
|
# /usr/local/cuda-x.y
|
|
# CUDAHOSTCXX
|
|
# specify a different compiler than the system one to use as the CUDA
|
|
# host compiler for nvcc.
|
|
#
|
|
# CUDA_NVCC_EXECUTABLE
|
|
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
|
|
#
|
|
# CUDNN_LIB_DIR
|
|
# CUDNN_INCLUDE_DIR
|
|
# CUDNN_LIBRARY
|
|
# specify where cuDNN is installed
|
|
#
|
|
# MIOPEN_LIB_DIR
|
|
# MIOPEN_INCLUDE_DIR
|
|
# MIOPEN_LIBRARY
|
|
# specify where MIOpen is installed
|
|
#
|
|
# NCCL_ROOT
|
|
# NCCL_LIB_DIR
|
|
# NCCL_INCLUDE_DIR
|
|
# specify where nccl is installed
|
|
#
|
|
# ACL_ROOT_DIR
|
|
# specify where Compute Library is installed
|
|
#
|
|
# LIBRARY_PATH
|
|
# LD_LIBRARY_PATH
|
|
# we will search for libraries in these paths
|
|
#
|
|
# ATEN_THREADING
|
|
# ATen parallel backend to use for intra- and inter-op parallelism
|
|
# possible values:
|
|
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
|
|
# NATIVE - use native thread pool for both intra- and inter-op tasks
|
|
#
|
|
# USE_SYSTEM_LIBS (work in progress)
|
|
# Use system-provided libraries to satisfy the build dependencies.
|
|
# When turned on, the following cmake variables will be toggled as well:
|
|
# USE_SYSTEM_CPUINFO=ON
|
|
# USE_SYSTEM_SLEEF=ON
|
|
# USE_SYSTEM_GLOO=ON
|
|
# BUILD_CUSTOM_PROTOBUF=OFF
|
|
# USE_SYSTEM_EIGEN_INSTALL=ON
|
|
# USE_SYSTEM_FP16=ON
|
|
# USE_SYSTEM_PTHREADPOOL=ON
|
|
# USE_SYSTEM_PSIMD=ON
|
|
# USE_SYSTEM_FXDIV=ON
|
|
# USE_SYSTEM_BENCHMARK=ON
|
|
# USE_SYSTEM_ONNX=ON
|
|
# USE_SYSTEM_XNNPACK=ON
|
|
# USE_SYSTEM_PYBIND11=ON
|
|
# USE_SYSTEM_NCCL=ON
|
|
# USE_SYSTEM_NVTX=ON
|
|
#
|
|
# USE_MIMALLOC
|
|
# Static link mimalloc into C10, and use mimalloc in alloc_cpu & alloc_free.
|
|
# By default, It is only enabled on Windows.
|
|
#
|
|
# USE_PRIORITIZED_TEXT_FOR_LD
|
|
# Uses prioritized text form cmake/prioritized_text.txt for LD
|
|
#
|
|
# BUILD_LIBTORCH_WHL
|
|
# Builds libtorch.so and its dependencies as a wheel
|
|
#
|
|
# BUILD_PYTHON_ONLY
|
|
# Builds pytorch as a wheel using libtorch.so from a separate wheel
|
|
|
|
import os
|
|
import sys
|
|
|
|
|
|
if sys.platform == "win32" and sys.maxsize.bit_length() == 31:
|
|
print(
|
|
"32-bit Windows Python runtime is not supported. Please switch to 64-bit Python."
|
|
)
|
|
sys.exit(-1)
|
|
|
|
import platform
|
|
|
|
|
|
BUILD_LIBTORCH_WHL = os.getenv("BUILD_LIBTORCH_WHL", "0") == "1"
|
|
BUILD_PYTHON_ONLY = os.getenv("BUILD_PYTHON_ONLY", "0") == "1"
|
|
|
|
python_min_version = (3, 9, 0)
|
|
python_min_version_str = ".".join(map(str, python_min_version))
|
|
if sys.version_info < python_min_version:
|
|
print(
|
|
f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required."
|
|
)
|
|
sys.exit(-1)
|
|
|
|
import filecmp
|
|
import glob
|
|
import importlib
|
|
import importlib.util
|
|
import json
|
|
import shutil
|
|
import subprocess
|
|
import sysconfig
|
|
import time
|
|
from collections import defaultdict
|
|
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.sdist
|
|
from setuptools import Extension, find_packages, setup
|
|
from setuptools.dist import Distribution
|
|
from tools.build_pytorch_libs import build_pytorch
|
|
from tools.generate_torch_version import get_torch_version
|
|
from tools.setup_helpers.cmake import CMake
|
|
from tools.setup_helpers.env import build_type, IS_DARWIN, IS_LINUX, IS_WINDOWS
|
|
from tools.setup_helpers.generate_linker_script import gen_linker_script
|
|
|
|
|
|
def _get_package_path(package_name):
|
|
spec = importlib.util.find_spec(package_name)
|
|
if spec:
|
|
# The package might be a namespace package, so get_data may fail
|
|
try:
|
|
loader = spec.loader
|
|
if loader is not None:
|
|
file_path = loader.get_filename() # type: ignore[attr-defined]
|
|
return os.path.dirname(file_path)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
|
|
# set up appropriate env variables
|
|
if BUILD_LIBTORCH_WHL:
|
|
# Set up environment variables for ONLY building libtorch.so and not libtorch_python.so
|
|
# functorch is not supported without python
|
|
os.environ["BUILD_FUNCTORCH"] = "OFF"
|
|
|
|
|
|
if BUILD_PYTHON_ONLY:
|
|
os.environ["BUILD_LIBTORCHLESS"] = "ON"
|
|
os.environ["LIBTORCH_LIB_PATH"] = f"{_get_package_path('torch')}/lib"
|
|
|
|
################################################################################
|
|
# Parameters parsed from environment
|
|
################################################################################
|
|
|
|
VERBOSE_SCRIPT = True
|
|
RUN_BUILD_DEPS = True
|
|
# see if the user passed a quiet flag to setup.py arguments and respect
|
|
# that in our parts of the build
|
|
EMIT_BUILD_WARNING = False
|
|
RERUN_CMAKE = False
|
|
CMAKE_ONLY = False
|
|
filtered_args = []
|
|
for i, arg in enumerate(sys.argv):
|
|
if arg == "--cmake":
|
|
RERUN_CMAKE = True
|
|
continue
|
|
if arg == "--cmake-only":
|
|
# Stop once cmake terminates. Leave users a chance to adjust build
|
|
# options.
|
|
CMAKE_ONLY = True
|
|
continue
|
|
if arg == "rebuild" or arg == "build":
|
|
arg = "build" # rebuild is gone, make it build
|
|
EMIT_BUILD_WARNING = True
|
|
if arg == "--":
|
|
filtered_args += sys.argv[i:]
|
|
break
|
|
if arg == "-q" or arg == "--quiet":
|
|
VERBOSE_SCRIPT = False
|
|
if arg in ["clean", "egg_info", "sdist"]:
|
|
RUN_BUILD_DEPS = False
|
|
filtered_args.append(arg)
|
|
sys.argv = filtered_args
|
|
|
|
if VERBOSE_SCRIPT:
|
|
|
|
def report(*args):
|
|
print(*args)
|
|
|
|
else:
|
|
|
|
def report(*args):
|
|
pass
|
|
|
|
# Make distutils respect --quiet too
|
|
setuptools.distutils.log.warn = report
|
|
|
|
# Constant known variables used throughout this file
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
third_party_path = os.path.join(cwd, "third_party")
|
|
|
|
# CMAKE: full path to python library
|
|
if IS_WINDOWS:
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sysconfig.get_config_var("prefix"), sysconfig.get_config_var("VERSION")
|
|
)
|
|
# Fix virtualenv builds
|
|
if not os.path.exists(cmake_python_library):
|
|
cmake_python_library = "{}/libs/python{}.lib".format(
|
|
sys.base_prefix, sysconfig.get_config_var("VERSION")
|
|
)
|
|
else:
|
|
cmake_python_library = "{}/{}".format(
|
|
sysconfig.get_config_var("LIBDIR"), sysconfig.get_config_var("INSTSONAME")
|
|
)
|
|
cmake_python_include_dir = sysconfig.get_path("include")
|
|
|
|
|
|
################################################################################
|
|
# Version, create_version_file, and package_name
|
|
################################################################################
|
|
|
|
package_name = os.getenv("TORCH_PACKAGE_NAME", "torch")
|
|
LIBTORCH_PKG_NAME = os.getenv("LIBTORCH_PACKAGE_NAME", "torch_no_python")
|
|
if BUILD_LIBTORCH_WHL:
|
|
package_name = LIBTORCH_PKG_NAME
|
|
|
|
|
|
package_type = os.getenv("PACKAGE_TYPE", "wheel")
|
|
version = get_torch_version()
|
|
report(f"Building wheel {package_name}-{version}")
|
|
|
|
cmake = CMake()
|
|
|
|
|
|
def get_submodule_folders():
|
|
git_modules_path = os.path.join(cwd, ".gitmodules")
|
|
default_modules_path = [
|
|
os.path.join(third_party_path, name)
|
|
for name in [
|
|
"gloo",
|
|
"cpuinfo",
|
|
"onnx",
|
|
"fbgemm",
|
|
"cutlass",
|
|
]
|
|
]
|
|
if not os.path.exists(git_modules_path):
|
|
return default_modules_path
|
|
with open(git_modules_path) as f:
|
|
return [
|
|
os.path.join(cwd, line.split("=", 1)[1].strip())
|
|
for line in f
|
|
if line.strip().startswith("path")
|
|
]
|
|
|
|
|
|
def check_submodules():
|
|
def check_for_files(folder, files):
|
|
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
|
|
report("Could not find any of {} in {}".format(", ".join(files), folder))
|
|
report("Did you run 'git submodule update --init --recursive'?")
|
|
sys.exit(1)
|
|
|
|
def not_exists_or_empty(folder):
|
|
return not os.path.exists(folder) or (
|
|
os.path.isdir(folder) and len(os.listdir(folder)) == 0
|
|
)
|
|
|
|
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
|
|
return
|
|
folders = get_submodule_folders()
|
|
# If none of the submodule folders exists, try to initialize them
|
|
if all(not_exists_or_empty(folder) for folder in folders):
|
|
try:
|
|
report(" --- Trying to initialize submodules")
|
|
start = time.time()
|
|
subprocess.check_call(
|
|
["git", "submodule", "update", "--init", "--recursive"], cwd=cwd
|
|
)
|
|
end = time.time()
|
|
report(f" --- Submodule initialization took {end - start:.2f} sec")
|
|
except Exception:
|
|
report(" --- Submodule initalization failed")
|
|
report("Please run:\n\tgit submodule update --init --recursive")
|
|
sys.exit(1)
|
|
for folder in folders:
|
|
check_for_files(
|
|
folder,
|
|
[
|
|
"CMakeLists.txt",
|
|
"Makefile",
|
|
"setup.py",
|
|
"LICENSE",
|
|
"LICENSE.md",
|
|
"LICENSE.txt",
|
|
],
|
|
)
|
|
check_for_files(
|
|
os.path.join(third_party_path, "fbgemm", "third_party", "asmjit"),
|
|
["CMakeLists.txt"],
|
|
)
|
|
|
|
|
|
# Windows has very bad support for symbolic links.
|
|
# Instead of using symlinks, we're going to copy files over
|
|
def mirror_files_into_torchgen():
|
|
# (new_path, orig_path)
|
|
# Directories are OK and are recursively mirrored.
|
|
paths = [
|
|
(
|
|
"torchgen/packaged/ATen/native/native_functions.yaml",
|
|
"aten/src/ATen/native/native_functions.yaml",
|
|
),
|
|
("torchgen/packaged/ATen/native/tags.yaml", "aten/src/ATen/native/tags.yaml"),
|
|
("torchgen/packaged/ATen/templates", "aten/src/ATen/templates"),
|
|
("torchgen/packaged/autograd", "tools/autograd"),
|
|
("torchgen/packaged/autograd/templates", "tools/autograd/templates"),
|
|
]
|
|
for new_path, orig_path in paths:
|
|
# Create the dirs involved in new_path if they don't exist
|
|
if not os.path.exists(new_path):
|
|
os.makedirs(os.path.dirname(new_path), exist_ok=True)
|
|
|
|
# Copy the files from the orig location to the new location
|
|
if os.path.isfile(orig_path):
|
|
shutil.copyfile(orig_path, new_path)
|
|
continue
|
|
if os.path.isdir(orig_path):
|
|
if os.path.exists(new_path):
|
|
# copytree fails if the tree exists already, so remove it.
|
|
shutil.rmtree(new_path)
|
|
shutil.copytree(orig_path, new_path)
|
|
continue
|
|
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
|
|
|
|
|
|
# all the work we need to do _before_ setup runs
|
|
def build_deps():
|
|
report("-- Building version " + version)
|
|
check_submodules()
|
|
check_pydep("yaml", "pyyaml")
|
|
build_python = not BUILD_LIBTORCH_WHL
|
|
build_pytorch(
|
|
version=version,
|
|
cmake_python_library=cmake_python_library,
|
|
build_python=build_python,
|
|
rerun_cmake=RERUN_CMAKE,
|
|
cmake_only=CMAKE_ONLY,
|
|
cmake=cmake,
|
|
)
|
|
|
|
if CMAKE_ONLY:
|
|
report(
|
|
'Finished running cmake. Run "ccmake build" or '
|
|
'"cmake-gui build" to adjust build options and '
|
|
'"python setup.py install" to build.'
|
|
)
|
|
sys.exit()
|
|
|
|
# Use copies instead of symbolic files.
|
|
# Windows has very poor support for them.
|
|
sym_files = [
|
|
"tools/shared/_utils_internal.py",
|
|
"torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h",
|
|
"torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h",
|
|
]
|
|
orig_files = [
|
|
"torch/_utils_internal.py",
|
|
"third_party/valgrind-headers/callgrind.h",
|
|
"third_party/valgrind-headers/valgrind.h",
|
|
]
|
|
for sym_file, orig_file in zip(sym_files, orig_files):
|
|
same = False
|
|
if os.path.exists(sym_file):
|
|
if filecmp.cmp(sym_file, orig_file):
|
|
same = True
|
|
else:
|
|
os.remove(sym_file)
|
|
if not same:
|
|
shutil.copyfile(orig_file, sym_file)
|
|
|
|
|
|
################################################################################
|
|
# Building dependent libraries
|
|
################################################################################
|
|
|
|
missing_pydep = """
|
|
Missing build dependency: Unable to `import {importname}`.
|
|
Please install it via `conda install {module}` or `pip install {module}`
|
|
""".strip()
|
|
|
|
|
|
def check_pydep(importname, module):
|
|
try:
|
|
importlib.import_module(importname)
|
|
except ImportError as e:
|
|
raise RuntimeError(
|
|
missing_pydep.format(importname=importname, module=module)
|
|
) from e
|
|
|
|
|
|
class build_ext(setuptools.command.build_ext.build_ext):
|
|
def _embed_libomp(self):
|
|
# Copy libiomp5.dylib/libomp.dylib inside the wheel package on MacOS
|
|
lib_dir = os.path.join(self.build_lib, "torch", "lib")
|
|
libtorch_cpu_path = os.path.join(lib_dir, "libtorch_cpu.dylib")
|
|
if not os.path.exists(libtorch_cpu_path):
|
|
return
|
|
# Parse libtorch_cpu load commands
|
|
otool_cmds = (
|
|
subprocess.check_output(["otool", "-l", libtorch_cpu_path])
|
|
.decode("utf-8")
|
|
.split("\n")
|
|
)
|
|
rpaths, libs = [], []
|
|
for idx, line in enumerate(otool_cmds):
|
|
if line.strip() == "cmd LC_LOAD_DYLIB":
|
|
lib_name = otool_cmds[idx + 2].strip()
|
|
assert lib_name.startswith("name ")
|
|
libs.append(lib_name.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
|
|
|
|
if line.strip() == "cmd LC_RPATH":
|
|
rpath = otool_cmds[idx + 2].strip()
|
|
assert rpath.startswith("path ")
|
|
rpaths.append(rpath.split(" ", 1)[1].rsplit("(", 1)[0][:-1])
|
|
|
|
omplib_path = get_cmake_cache_vars()["OpenMP_libomp_LIBRARY"]
|
|
omplib_name = get_cmake_cache_vars()["OpenMP_C_LIB_NAMES"] + ".dylib"
|
|
omplib_rpath_path = os.path.join("@rpath", omplib_name)
|
|
|
|
# This logic is fragile and checks only two cases:
|
|
# - libtorch_cpu depends on `@rpath/libomp.dylib`e (happens when built inside miniconda environment)
|
|
# - libtorch_cpu depends on `/abs/path/to/libomp.dylib` (happens when built with libomp from homebrew)
|
|
if not any(c in libs for c in [omplib_path, omplib_rpath_path]):
|
|
return
|
|
|
|
# Copy libomp/libiomp5 from rpath locations
|
|
target_lib = os.path.join(self.build_lib, "torch", "lib", omplib_name)
|
|
libomp_relocated = False
|
|
for rpath in rpaths:
|
|
source_lib = os.path.join(rpath, omplib_name)
|
|
if not os.path.exists(source_lib):
|
|
continue
|
|
self.copy_file(source_lib, target_lib)
|
|
# Delete old rpath and add @loader_lib to the rpath
|
|
# This should prevent delocate from attempting to package another instance
|
|
# of OpenMP library in torch wheel as well as loading two libomp.dylib into
|
|
# the address space, as libraries are cached by their unresolved names
|
|
install_name_tool_args = [
|
|
"-rpath",
|
|
rpath,
|
|
"@loader_path",
|
|
]
|
|
libomp_relocated = True
|
|
break
|
|
if not libomp_relocated and os.path.exists(omplib_path):
|
|
self.copy_file(omplib_path, target_lib)
|
|
install_name_tool_args = [
|
|
"-change",
|
|
omplib_path,
|
|
omplib_rpath_path,
|
|
]
|
|
if "@loader_path" not in rpaths:
|
|
install_name_tool_args += [
|
|
"-add_rpath",
|
|
"@loader_path",
|
|
]
|
|
libomp_relocated = True
|
|
if libomp_relocated:
|
|
install_name_tool_args.insert(0, "install_name_tool")
|
|
install_name_tool_args.append(libtorch_cpu_path)
|
|
subprocess.check_call(install_name_tool_args)
|
|
# Copy omp.h from OpenMP_C_FLAGS and copy it into include folder
|
|
omp_cflags = get_cmake_cache_vars()["OpenMP_C_FLAGS"]
|
|
if not omp_cflags:
|
|
return
|
|
for include_dir in [f[2:] for f in omp_cflags.split(" ") if f.startswith("-I")]:
|
|
omp_h = os.path.join(include_dir, "omp.h")
|
|
if not os.path.exists(omp_h):
|
|
continue
|
|
target_omp_h = os.path.join(self.build_lib, "torch", "include", "omp.h")
|
|
self.copy_file(omp_h, target_omp_h)
|
|
break
|
|
|
|
def run(self):
|
|
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
|
|
# accurate report on what is used and what is not.
|
|
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
if cmake_cache_vars["USE_NUMPY"]:
|
|
report("-- Building with NumPy bindings")
|
|
else:
|
|
report("-- NumPy not found")
|
|
if cmake_cache_vars["USE_CUDNN"]:
|
|
report(
|
|
"-- Detected cuDNN at "
|
|
+ cmake_cache_vars["CUDNN_LIBRARY"]
|
|
+ ", "
|
|
+ cmake_cache_vars["CUDNN_INCLUDE_DIR"]
|
|
)
|
|
else:
|
|
report("-- Not using cuDNN")
|
|
if cmake_cache_vars["USE_CUDA"]:
|
|
report("-- Detected CUDA at " + cmake_cache_vars["CUDA_TOOLKIT_ROOT_DIR"])
|
|
else:
|
|
report("-- Not using CUDA")
|
|
if cmake_cache_vars["USE_XPU"]:
|
|
report("-- Detected XPU runtime at " + cmake_cache_vars["SYCL_LIBRARY_DIR"])
|
|
else:
|
|
report("-- Not using XPU")
|
|
if cmake_cache_vars["USE_MKLDNN"]:
|
|
report("-- Using MKLDNN")
|
|
if cmake_cache_vars["USE_MKLDNN_ACL"]:
|
|
report("-- Using Compute Library for the Arm architecture with MKLDNN")
|
|
else:
|
|
report(
|
|
"-- Not using Compute Library for the Arm architecture with MKLDNN"
|
|
)
|
|
if cmake_cache_vars["USE_MKLDNN_CBLAS"]:
|
|
report("-- Using CBLAS in MKLDNN")
|
|
else:
|
|
report("-- Not using CBLAS in MKLDNN")
|
|
else:
|
|
report("-- Not using MKLDNN")
|
|
if cmake_cache_vars["USE_NCCL"] and cmake_cache_vars["USE_SYSTEM_NCCL"]:
|
|
report(
|
|
"-- Using system provided NCCL library at {}, {}".format(
|
|
cmake_cache_vars["NCCL_LIBRARIES"],
|
|
cmake_cache_vars["NCCL_INCLUDE_DIRS"],
|
|
)
|
|
)
|
|
elif cmake_cache_vars["USE_NCCL"]:
|
|
report("-- Building NCCL library")
|
|
else:
|
|
report("-- Not using NCCL")
|
|
if cmake_cache_vars["USE_DISTRIBUTED"]:
|
|
if IS_WINDOWS:
|
|
report("-- Building without distributed package")
|
|
else:
|
|
report("-- Building with distributed package: ")
|
|
report(
|
|
" -- USE_TENSORPIPE={}".format(cmake_cache_vars["USE_TENSORPIPE"])
|
|
)
|
|
report(" -- USE_GLOO={}".format(cmake_cache_vars["USE_GLOO"]))
|
|
report(" -- USE_MPI={}".format(cmake_cache_vars["USE_OPENMPI"]))
|
|
else:
|
|
report("-- Building without distributed package")
|
|
if cmake_cache_vars["STATIC_DISPATCH_BACKEND"]:
|
|
report(
|
|
"-- Using static dispatch with backend {}".format(
|
|
cmake_cache_vars["STATIC_DISPATCH_BACKEND"]
|
|
)
|
|
)
|
|
if cmake_cache_vars["USE_LIGHTWEIGHT_DISPATCH"]:
|
|
report("-- Using lightweight dispatch")
|
|
if cmake_cache_vars["BUILD_EXECUTORCH"]:
|
|
report("-- Building Executorch")
|
|
|
|
if cmake_cache_vars["USE_ITT"]:
|
|
report("-- Using ITT")
|
|
else:
|
|
report("-- Not using ITT")
|
|
|
|
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
|
|
# in system CFLAGS
|
|
c_flags = str(os.getenv("CFLAGS", ""))
|
|
if (
|
|
IS_LINUX
|
|
and "-fstack-clash-protection" in c_flags
|
|
and "clang" in os.environ.get("CC", "")
|
|
):
|
|
os.environ["CC"] = str(os.environ["CC"])
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
if IS_DARWIN:
|
|
self._embed_libomp()
|
|
|
|
# Copy the essential export library to compile C++ extensions.
|
|
if IS_WINDOWS:
|
|
build_temp = self.build_temp
|
|
|
|
ext_filename = self.get_ext_filename("_C")
|
|
lib_filename = ".".join(ext_filename.split(".")[:-1]) + ".lib"
|
|
|
|
export_lib = os.path.join(
|
|
build_temp, "torch", "csrc", lib_filename
|
|
).replace("\\", "/")
|
|
|
|
build_lib = self.build_lib
|
|
|
|
target_lib = os.path.join(build_lib, "torch", "lib", "_C.lib").replace(
|
|
"\\", "/"
|
|
)
|
|
|
|
# Create "torch/lib" directory if not exists.
|
|
# (It is not created yet in "develop" mode.)
|
|
target_dir = os.path.dirname(target_lib)
|
|
if not os.path.exists(target_dir):
|
|
os.makedirs(target_dir)
|
|
|
|
self.copy_file(export_lib, target_lib)
|
|
|
|
def build_extensions(self):
|
|
self.create_compile_commands()
|
|
|
|
# Copy functorch extension
|
|
for i, ext in enumerate(self.extensions):
|
|
if ext.name != "functorch._C":
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
fileext = os.path.splitext(filename)[1]
|
|
src = os.path.join(os.path.dirname(filename), "functorch" + fileext)
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
if os.path.exists(src):
|
|
report(f"Copying {ext.name} from {src} to {dst}")
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
|
|
setuptools.command.build_ext.build_ext.build_extensions(self)
|
|
|
|
def get_outputs(self):
|
|
outputs = setuptools.command.build_ext.build_ext.get_outputs(self)
|
|
outputs.append(os.path.join(self.build_lib, "caffe2"))
|
|
report(f"setup.py::get_outputs returning {outputs}")
|
|
return outputs
|
|
|
|
def create_compile_commands(self):
|
|
def load(filename):
|
|
with open(filename) as f:
|
|
return json.load(f)
|
|
|
|
ninja_files = glob.glob("build/*compile_commands.json")
|
|
cmake_files = glob.glob("torch/lib/build/*/compile_commands.json")
|
|
all_commands = [entry for f in ninja_files + cmake_files for entry in load(f)]
|
|
|
|
# cquery does not like c++ compiles that start with gcc.
|
|
# It forgets to include the c++ header directories.
|
|
# We can work around this by replacing the gcc calls that python
|
|
# setup.py generates with g++ calls instead
|
|
for command in all_commands:
|
|
if command["command"].startswith("gcc "):
|
|
command["command"] = "g++ " + command["command"][4:]
|
|
|
|
new_contents = json.dumps(all_commands, indent=2)
|
|
contents = ""
|
|
if os.path.exists("compile_commands.json"):
|
|
with open("compile_commands.json") as f:
|
|
contents = f.read()
|
|
if contents != new_contents:
|
|
with open("compile_commands.json", "w") as f:
|
|
f.write(new_contents)
|
|
|
|
|
|
class concat_license_files:
|
|
"""Merge LICENSE and LICENSES_BUNDLED.txt as a context manager
|
|
|
|
LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated
|
|
from all the licenses found in ./third_party/. We concatenate them so there
|
|
is a single license file in the sdist and wheels with all of the necessary
|
|
licensing info.
|
|
"""
|
|
|
|
def __init__(self, include_files=False):
|
|
self.f1 = "LICENSE"
|
|
self.f2 = "third_party/LICENSES_BUNDLED.txt"
|
|
self.include_files = include_files
|
|
|
|
def __enter__(self):
|
|
"""Concatenate files"""
|
|
|
|
old_path = sys.path
|
|
sys.path.append(third_party_path)
|
|
try:
|
|
from build_bundled import create_bundled
|
|
finally:
|
|
sys.path = old_path
|
|
|
|
with open(self.f1) as f1:
|
|
self.bsd_text = f1.read()
|
|
|
|
with open(self.f1, "a") as f1:
|
|
f1.write("\n\n")
|
|
create_bundled(
|
|
os.path.relpath(third_party_path), f1, include_files=self.include_files
|
|
)
|
|
|
|
def __exit__(self, exception_type, exception_value, traceback):
|
|
"""Restore content of f1"""
|
|
with open(self.f1, "w") as f:
|
|
f.write(self.bsd_text)
|
|
|
|
|
|
try:
|
|
from wheel.bdist_wheel import bdist_wheel
|
|
except ImportError:
|
|
# This is useful when wheel is not installed and bdist_wheel is not
|
|
# specified on the command line. If it _is_ specified, parsing the command
|
|
# line will fail before wheel_concatenate is needed
|
|
wheel_concatenate = None
|
|
else:
|
|
# Need to create the proper LICENSE.txt for the wheel
|
|
class wheel_concatenate(bdist_wheel):
|
|
"""check submodules on sdist to prevent incomplete tarballs"""
|
|
|
|
def run(self):
|
|
with concat_license_files(include_files=True):
|
|
super().run()
|
|
|
|
def write_wheelfile(self, *args, **kwargs):
|
|
super().write_wheelfile(*args, **kwargs)
|
|
|
|
if BUILD_LIBTORCH_WHL:
|
|
# Remove extraneneous files in the libtorch wheel
|
|
for root, dirs, files in os.walk(self.bdist_dir):
|
|
for file in files:
|
|
if file.endswith((".a", ".so")) and os.path.isfile(
|
|
os.path.join(self.bdist_dir, file)
|
|
):
|
|
os.remove(os.path.join(root, file))
|
|
elif file.endswith(".py"):
|
|
os.remove(os.path.join(root, file))
|
|
# need an __init__.py file otherwise we wouldn't have a package
|
|
open(os.path.join(self.bdist_dir, "torch", "__init__.py"), "w").close()
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
def run(self):
|
|
super().run()
|
|
|
|
|
|
class clean(setuptools.Command):
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
def run(self):
|
|
import glob
|
|
import re
|
|
|
|
with open(".gitignore") as f:
|
|
ignores = f.read()
|
|
pat = re.compile(r"^#( BEGIN NOT-CLEAN-FILES )?")
|
|
for wildcard in filter(None, ignores.split("\n")):
|
|
match = pat.match(wildcard)
|
|
if match:
|
|
if match.group(1):
|
|
# Marker is found and stop reading .gitignore.
|
|
break
|
|
# Ignore lines which begin with '#'.
|
|
else:
|
|
# Don't remove absolute paths from the system
|
|
wildcard = wildcard.lstrip("./")
|
|
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
|
|
class sdist(setuptools.command.sdist.sdist):
|
|
def run(self):
|
|
with concat_license_files():
|
|
super().run()
|
|
|
|
|
|
def get_cmake_cache_vars():
|
|
try:
|
|
return defaultdict(lambda: False, cmake.get_cmake_cache_variables())
|
|
except FileNotFoundError:
|
|
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
|
|
return defaultdict(lambda: False)
|
|
|
|
|
|
def configure_extension_build():
|
|
r"""Configures extension build options according to system environment and user's choice.
|
|
|
|
Returns:
|
|
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
|
|
"""
|
|
|
|
cmake_cache_vars = get_cmake_cache_vars()
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
library_dirs = []
|
|
extra_install_requires = []
|
|
|
|
if IS_WINDOWS:
|
|
# /NODEFAULTLIB makes sure we only link to DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
extra_link_args = ["/NODEFAULTLIB:LIBCMT.LIB"]
|
|
# /MD links against DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
# /EHsc is about standard C++ exception handling
|
|
extra_compile_args = ["/MD", "/FS", "/EHsc"]
|
|
else:
|
|
extra_link_args = []
|
|
extra_compile_args = [
|
|
"-Wall",
|
|
"-Wextra",
|
|
"-Wno-strict-overflow",
|
|
"-Wno-unused-parameter",
|
|
"-Wno-missing-field-initializers",
|
|
"-Wno-unknown-pragmas",
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
# We also depend on it in our code (even Python 3).
|
|
"-fno-strict-aliasing",
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
main_compile_args = []
|
|
main_libraries = ["torch_python"]
|
|
|
|
main_link_args = []
|
|
main_sources = ["torch/csrc/stub.c"]
|
|
|
|
if BUILD_LIBTORCH_WHL:
|
|
main_libraries = ["torch"]
|
|
main_sources = []
|
|
|
|
if build_type.is_debug():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append("/Z7")
|
|
extra_link_args.append("/DEBUG:FULL")
|
|
else:
|
|
extra_compile_args += ["-O0", "-g"]
|
|
extra_link_args += ["-O0", "-g"]
|
|
|
|
if build_type.is_rel_with_deb_info():
|
|
if IS_WINDOWS:
|
|
extra_compile_args.append("/Z7")
|
|
extra_link_args.append("/DEBUG:FULL")
|
|
else:
|
|
extra_compile_args += ["-g"]
|
|
extra_link_args += ["-g"]
|
|
|
|
# pypi cuda package that requires installation of cuda runtime, cudnn and cublas
|
|
# should be included in all wheels uploaded to pypi
|
|
pytorch_extra_install_requirements = os.getenv(
|
|
"PYTORCH_EXTRA_INSTALL_REQUIREMENTS", ""
|
|
)
|
|
if pytorch_extra_install_requirements:
|
|
report(
|
|
f"pytorch_extra_install_requirements: {pytorch_extra_install_requirements}"
|
|
)
|
|
extra_install_requires += pytorch_extra_install_requirements.split("|")
|
|
|
|
# Cross-compile for M1
|
|
if IS_DARWIN:
|
|
macos_target_arch = os.getenv("CMAKE_OSX_ARCHITECTURES", "")
|
|
if macos_target_arch in ["arm64", "x86_64"]:
|
|
macos_sysroot_path = os.getenv("CMAKE_OSX_SYSROOT")
|
|
if macos_sysroot_path is None:
|
|
macos_sysroot_path = (
|
|
subprocess.check_output(
|
|
["xcrun", "--show-sdk-path", "--sdk", "macosx"]
|
|
)
|
|
.decode("utf-8")
|
|
.strip()
|
|
)
|
|
extra_compile_args += [
|
|
"-arch",
|
|
macos_target_arch,
|
|
"-isysroot",
|
|
macos_sysroot_path,
|
|
]
|
|
extra_link_args += ["-arch", macos_target_arch]
|
|
|
|
def make_relative_rpath_args(path):
|
|
if IS_DARWIN:
|
|
return ["-Wl,-rpath,@loader_path/" + path]
|
|
elif IS_WINDOWS:
|
|
return []
|
|
else:
|
|
return ["-Wl,-rpath,$ORIGIN/" + path]
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
excludes = ["tools", "tools.*", "caffe2", "caffe2.*"]
|
|
if not cmake_cache_vars["BUILD_FUNCTORCH"]:
|
|
excludes.extend(["functorch", "functorch.*"])
|
|
packages = find_packages(exclude=excludes)
|
|
C = Extension(
|
|
"torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language="c",
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=[],
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args
|
|
+ main_link_args
|
|
+ make_relative_rpath_args("lib"),
|
|
)
|
|
extensions.append(C)
|
|
|
|
# These extensions are built by cmake and copied manually in build_extensions()
|
|
# inside the build_ext implementation
|
|
if cmake_cache_vars["BUILD_FUNCTORCH"]:
|
|
extensions.append(
|
|
Extension(name="functorch._C", sources=[]),
|
|
)
|
|
|
|
cmdclass = {
|
|
"bdist_wheel": wheel_concatenate,
|
|
"build_ext": build_ext,
|
|
"clean": clean,
|
|
"install": install,
|
|
"sdist": sdist,
|
|
}
|
|
|
|
entry_points = {
|
|
"console_scripts": [
|
|
"torchrun = torch.distributed.run:main",
|
|
],
|
|
"torchrun.logs_specs": [
|
|
"default = torch.distributed.elastic.multiprocessing:DefaultLogsSpecs",
|
|
],
|
|
}
|
|
|
|
if cmake_cache_vars["USE_DISTRIBUTED"]:
|
|
# Only enable fr_trace command if distributed is enabled
|
|
entry_points["console_scripts"].append(
|
|
"torchfrtrace = tools.flight_recorder.fr_trace:main",
|
|
)
|
|
return extensions, cmdclass, packages, entry_points, extra_install_requires
|
|
|
|
|
|
# post run, warnings, printed at the end to make them more visible
|
|
build_update_message = """
|
|
It is no longer necessary to use the 'build' or 'rebuild' targets
|
|
|
|
To install:
|
|
$ python setup.py install
|
|
To develop locally:
|
|
$ python setup.py develop
|
|
To force cmake to re-generate native build files (off by default):
|
|
$ python setup.py develop --cmake
|
|
"""
|
|
|
|
|
|
def print_box(msg):
|
|
lines = msg.split("\n")
|
|
size = max(len(l) + 1 for l in lines)
|
|
print("-" * (size + 2))
|
|
for l in lines:
|
|
print("|{}{}|".format(l, " " * (size - len(l))))
|
|
print("-" * (size + 2))
|
|
|
|
|
|
def main():
|
|
if BUILD_LIBTORCH_WHL and BUILD_PYTHON_ONLY:
|
|
raise RuntimeError(
|
|
"Conflict: 'BUILD_LIBTORCH_WHL' and 'BUILD_PYTHON_ONLY' can't both be 1. Set one to 0 and rerun."
|
|
)
|
|
install_requires = [
|
|
"filelock",
|
|
"typing-extensions>=4.10.0",
|
|
'setuptools ; python_version >= "3.12"',
|
|
"sympy>=1.13.3",
|
|
"networkx",
|
|
"jinja2",
|
|
"fsspec",
|
|
]
|
|
|
|
if BUILD_PYTHON_ONLY:
|
|
install_requires.append(f"{LIBTORCH_PKG_NAME}=={get_torch_version()}")
|
|
|
|
use_prioritized_text = str(os.getenv("USE_PRIORITIZED_TEXT_FOR_LD", ""))
|
|
if (
|
|
use_prioritized_text == ""
|
|
and platform.system() == "Linux"
|
|
and platform.processor() == "aarch64"
|
|
):
|
|
print_box(
|
|
"""
|
|
WARNING: we strongly recommend enabling linker script optimization for ARM + CUDA.
|
|
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
|
|
"""
|
|
)
|
|
if use_prioritized_text == "1" or use_prioritized_text == "True":
|
|
gen_linker_script(
|
|
filein="cmake/prioritized_text.txt", fout="cmake/linker_script.ld"
|
|
)
|
|
linker_script_path = os.path.abspath("cmake/linker_script.ld")
|
|
os.environ["LDFLAGS"] = os.getenv("LDFLAGS", "") + f" -T{linker_script_path}"
|
|
os.environ["CFLAGS"] = (
|
|
os.getenv("CFLAGS", "") + " -ffunction-sections -fdata-sections"
|
|
)
|
|
os.environ["CXXFLAGS"] = (
|
|
os.getenv("CXXFLAGS", "") + " -ffunction-sections -fdata-sections"
|
|
)
|
|
|
|
# Parse the command line and check the arguments before we proceed with
|
|
# building deps and setup. We need to set values so `--help` works.
|
|
dist = Distribution()
|
|
dist.script_name = os.path.basename(sys.argv[0])
|
|
dist.script_args = sys.argv[1:]
|
|
try:
|
|
dist.parse_command_line()
|
|
except setuptools.distutils.errors.DistutilsArgError as e:
|
|
print(e)
|
|
sys.exit(1)
|
|
|
|
mirror_files_into_torchgen()
|
|
if RUN_BUILD_DEPS:
|
|
build_deps()
|
|
|
|
(
|
|
extensions,
|
|
cmdclass,
|
|
packages,
|
|
entry_points,
|
|
extra_install_requires,
|
|
) = configure_extension_build()
|
|
install_requires += extra_install_requires
|
|
|
|
extras_require = {
|
|
"optree": ["optree>=0.13.0"],
|
|
"opt-einsum": ["opt-einsum>=3.3"],
|
|
"pyyaml": ["pyyaml"],
|
|
}
|
|
|
|
# Read in README.md for our long_description
|
|
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
|
|
long_description = f.read()
|
|
|
|
version_range_max = max(sys.version_info[1], 13) + 1
|
|
torch_package_data = [
|
|
"py.typed",
|
|
"bin/*",
|
|
"test/*",
|
|
"*.pyi",
|
|
"**/*.pyi",
|
|
"lib/*.pdb",
|
|
"lib/**/*.pdb",
|
|
"lib/*shm*",
|
|
"lib/torch_shm_manager",
|
|
"lib/*.h",
|
|
"lib/**/*.h",
|
|
"include/*.h",
|
|
"include/**/*.h",
|
|
"include/*.hpp",
|
|
"include/**/*.hpp",
|
|
"include/*.cuh",
|
|
"include/**/*.cuh",
|
|
"_inductor/codegen/*.h",
|
|
"_inductor/codegen/aoti_runtime/*.cpp",
|
|
"_inductor/script.ld",
|
|
"_export/serde/*.yaml",
|
|
"_export/serde/*.thrift",
|
|
"share/cmake/ATen/*.cmake",
|
|
"share/cmake/Caffe2/*.cmake",
|
|
"share/cmake/Caffe2/public/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake",
|
|
"share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake",
|
|
"share/cmake/Gloo/*.cmake",
|
|
"share/cmake/Tensorpipe/*.cmake",
|
|
"share/cmake/Torch/*.cmake",
|
|
"utils/benchmark/utils/*.cpp",
|
|
"utils/benchmark/utils/valgrind_wrapper/*.cpp",
|
|
"utils/benchmark/utils/valgrind_wrapper/*.h",
|
|
"utils/model_dump/skeleton.html",
|
|
"utils/model_dump/code.js",
|
|
"utils/model_dump/*.mjs",
|
|
]
|
|
|
|
if not BUILD_LIBTORCH_WHL:
|
|
torch_package_data.extend(
|
|
[
|
|
"lib/libtorch_python.so",
|
|
"lib/libtorch_python.dylib",
|
|
"lib/libtorch_python.dll",
|
|
]
|
|
)
|
|
if not BUILD_PYTHON_ONLY:
|
|
torch_package_data.extend(
|
|
[
|
|
"lib/*.so*",
|
|
"lib/*.dylib*",
|
|
"lib/*.dll",
|
|
"lib/*.lib",
|
|
]
|
|
)
|
|
aotriton_image_path = os.path.join(lib_path, "aotriton.images")
|
|
aks2_files = []
|
|
for root, dirs, files in os.walk(aotriton_image_path):
|
|
subpath = os.path.relpath(root, start=aotriton_image_path)
|
|
for fn in files:
|
|
aks2_files.append(os.path.join("lib/aotriton.images", subpath, fn))
|
|
torch_package_data += aks2_files
|
|
if get_cmake_cache_vars()["USE_TENSORPIPE"]:
|
|
torch_package_data.extend(
|
|
[
|
|
"include/tensorpipe/*.h",
|
|
"include/tensorpipe/**/*.h",
|
|
]
|
|
)
|
|
if get_cmake_cache_vars()["USE_KINETO"]:
|
|
torch_package_data.extend(
|
|
[
|
|
"include/kineto/*.h",
|
|
"include/kineto/**/*.h",
|
|
]
|
|
)
|
|
torchgen_package_data = [
|
|
"packaged/*",
|
|
"packaged/**/*",
|
|
]
|
|
package_data = {
|
|
"torch": torch_package_data,
|
|
}
|
|
|
|
if not BUILD_LIBTORCH_WHL:
|
|
package_data["torchgen"] = torchgen_package_data
|
|
else:
|
|
# no extensions in BUILD_LIBTORCH_WHL mode
|
|
extensions = []
|
|
|
|
setup(
|
|
name=package_name,
|
|
version=version,
|
|
description=(
|
|
"Tensors and Dynamic neural networks in Python with strong GPU acceleration"
|
|
),
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
entry_points=entry_points,
|
|
install_requires=install_requires,
|
|
extras_require=extras_require,
|
|
package_data=package_data,
|
|
# TODO fix later Manifest.IN file was previously ignored
|
|
include_package_data=False, # defaults to True with pyproject.toml file
|
|
url="https://pytorch.org/",
|
|
download_url="https://github.com/pytorch/pytorch/tags",
|
|
author="PyTorch Team",
|
|
author_email="packages@pytorch.org",
|
|
python_requires=f">={python_min_version_str}",
|
|
# PyPI package information.
|
|
classifiers=[
|
|
"Development Status :: 5 - Production/Stable",
|
|
"Intended Audience :: Developers",
|
|
"Intended Audience :: Education",
|
|
"Intended Audience :: Science/Research",
|
|
"License :: OSI Approved :: BSD License",
|
|
"Topic :: Scientific/Engineering",
|
|
"Topic :: Scientific/Engineering :: Mathematics",
|
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
"Topic :: Software Development",
|
|
"Topic :: Software Development :: Libraries",
|
|
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
"Programming Language :: C++",
|
|
"Programming Language :: Python :: 3",
|
|
]
|
|
+ [
|
|
f"Programming Language :: Python :: 3.{i}"
|
|
for i in range(python_min_version[1], version_range_max)
|
|
],
|
|
license="BSD-3-Clause",
|
|
keywords="pytorch, machine learning",
|
|
)
|
|
if EMIT_BUILD_WARNING:
|
|
print_box(build_update_message)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|