Files
pytorch/benchmarks/operator_benchmark/pt/qatembedding_ops_test.py
Xuehai Pan 26f4f10ac8 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
2024-05-27 14:49:57 +00:00

94 lines
2.7 KiB
Python

import numpy
from pt import configs
import operator_benchmark as op_bench
import torch
import torch.ao.nn.qat as nnqat
from torch.ao.quantization import default_embedding_qat_qconfig
"""
Microbenchmarks for QAT Embedding + EmbeddingBag operators.
"""
class QATEmbeddingBagBenchmark(op_bench.TorchBenchmarkBase):
def init(
self,
embeddingbags,
dim,
mode,
input_size,
offset,
sparse,
include_last_offset,
device,
):
qconfig = default_embedding_qat_qconfig
self.embedding = nnqat.EmbeddingBag(
num_embeddings=embeddingbags,
embedding_dim=dim,
mode=mode,
include_last_offset=include_last_offset,
sparse=sparse,
device=device,
qconfig=qconfig,
)
numpy.random.seed((1 << 32) - 1)
offsets = torch.LongTensor([offset], device=device)
input = torch.tensor(
numpy.random.randint(0, embeddingbags, input_size), device=device
).long()
self.inputs = {
"input": input,
"offset": torch.cat(
(offsets, torch.tensor([input.size(0)], dtype=torch.long)), 0
),
}
self.set_module_name("qatEmbeddingBag")
def forward(self, input, offset):
return self.embedding(input, offset)
# Currently, EmbeddingBag QAT does not support sparse embeddings.
embeddingbag_short_dense_configs = [
config
for config in configs.embeddingbag_short_configs
if {"sparse": True} not in config
]
op_bench.generate_pt_test(embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark)
op_bench.generate_pt_gradient_test(
embeddingbag_short_dense_configs, QATEmbeddingBagBenchmark
)
class QATEmbeddingBenchmark(op_bench.TorchBenchmarkBase):
def init(self, num_embeddings, embedding_dim, input_size, device):
qconfig = default_embedding_qat_qconfig
self.embedding = nnqat.Embedding(
num_embeddings=num_embeddings,
embedding_dim=embedding_dim,
qconfig=qconfig,
device=device,
)
self.embedding.qconfig = default_embedding_qat_qconfig
numpy.random.seed((1 << 32) - 1)
self.input = torch.tensor(
numpy.random.randint(0, num_embeddings, input_size), device=device
).long()
self.inputs = {"input": self.input}
self.set_module_name("qatEmbedding")
def forward(self, input):
return self.embedding(input)
op_bench.generate_pt_test(configs.embedding_short_configs, QATEmbeddingBenchmark)
op_bench.generate_pt_gradient_test(
configs.embedding_short_configs, QATEmbeddingBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()