Files
pytorch/benchmarks/tensorexpr/normalization.py
Kevin Stephano 26a91a9f04 [WIP][JIT] Add benchmarking support of NV Fuser with FP16 dtype support (#44101)
Summary:
Modified files in `benchmarks/tensorexpr` to add support for NVIDIA's Fuser for the jit compiler.

This support has some modifications besides adding an option to support the NVIDIA fuser:

* Adds FP16 Datatype support
* Fixes SOL/Algo calculations to generally use the data type instead of being fixed to 4 bytes
* Adds IR printing and kernel printing knobs
* Adds a knob `input_iter` to create ranges of inputs currently only for reductions
* Adds further reduction support for Inner and Outer dimension reductions that are compatible with the `input_iter` knob.
* Added `simple_element`, `reduce2d_inner`, and `reduce2d_outer` to isolate performance on elementwise  and reduction operations in the most minimal fashion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44101

Reviewed By: ngimel

Differential Revision: D23713658

Pulled By: bertmaher

fbshipit-source-id: d6b83cfab559aefe107c23b3c0f2df9923b3adc1
2020-09-15 15:10:49 -07:00

82 lines
2.1 KiB
Python

from . import benchmark
from . import tensor_engine
class NormalizationBench(benchmark.Benchmark):
def __init__(self, mode, device, dtype, N, C, H, W):
super().__init__(mode, device, dtype)
self.N = N
self.C = C
self.H = H
self.W = W
self.data = self.nchw_rand(
[self.N, self.C, self.H, self.W],
device=device, dtype=dtype,
requires_grad=self.requires_grad,
)
self.running_mean = self.rand([self.C], device=device, dtype=dtype)
self.running_var = self.rand([self.C], device=device, dtype=dtype)
self.training = self.mode == "both"
def config(self):
return [self.N, self.C, self.H, self.W]
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1 + 1
algorithmic_count = 2 + 1
else:
sol_count = (1 + 1) + (1 + 1)
algorithmic_count = (2 + 1) + (3 + 1)
buffer_size = self.N * self.C * self.H * self.W * 4
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
@staticmethod
def default_configs():
return [[128, 32, 128, 128]]
class BatchNormBench(NormalizationBench):
def forward(self):
y = self.batch_norm(
self.data, self.running_mean, self.running_var, training=self.training
)
return y
@staticmethod
def module():
return "batchnorm"
class InstanceNormBench(NormalizationBench):
def forward(self):
y = self.instance_norm(self.data)
return y
@staticmethod
def module():
return "instance_norm"
def is_supported(self):
return tensor_engine.is_supported(self.instance_norm)
class LayerNormBench(NormalizationBench):
def forward(self):
y = self.layer_norm(self.data, [self.H, self.W])
return y
@staticmethod
def module():
return "layernorm"
benchmark.register_benchmark_class(BatchNormBench)
benchmark.register_benchmark_class(InstanceNormBench)
benchmark.register_benchmark_class(LayerNormBench)