mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR continues to fix clang-tidy warnings for headers in c10/core and c10/util. Pull Request resolved: https://github.com/pytorch/pytorch/pull/115495 Approved by: https://github.com/malfet
77 lines
3.0 KiB
C++
77 lines
3.0 KiB
C++
#pragma once
|
|
|
|
#include <c10/core/impl/PyInterpreter.h>
|
|
#include <c10/macros/Macros.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/python_stub.h>
|
|
|
|
#include <atomic>
|
|
|
|
namespace c10 {
|
|
|
|
// A PyHandleCache represents a cached pointer from a C++ object to
|
|
// a Python object that represents that object analogously in Python.
|
|
// Upon a cache hit, the relevant object can be retrieved after a test
|
|
// and then a memory load. Two conditions must hold to be able to use this
|
|
// class:
|
|
//
|
|
// - This must truly be a cache; e.g., the caller must be able to produce
|
|
// the object some other way if the cache hit misses.
|
|
//
|
|
// - This must truly be a handle; e.g., the Python object referenced by
|
|
// this class must have static lifetime. This means we don't have to
|
|
// maintain strong ownership or deallocate the object when the C++ object
|
|
// dies. Static lifetime is a good idea in conjunction with the cache,
|
|
// since if you are producing a fresh object on miss you won't be
|
|
// maintaining object identity. If you need bidirectional ownership,
|
|
// you will want to factor out the pattern in TensorImpl with
|
|
// resurrection.
|
|
//
|
|
// This cache is expected to not improve perf under torchdeploy, as one
|
|
// interpreter will fill up the cache, and all the interpreters will be
|
|
// unable to use the slot. A potential improvement is to have multiple
|
|
// slots (one per interpreter), which will work in deployment scenarios
|
|
// where there a stable, fixed number of interpreters. You can also store
|
|
// the relevant state in the Python library, rather than in the non-Python
|
|
// library (although in many cases, this is not convenient, as there may
|
|
// not be a way to conveniently index based on the object.)
|
|
class PyHandleCache {
|
|
public:
|
|
PyHandleCache() : pyinterpreter_(nullptr) {}
|
|
|
|
// Attempt to fetch the pointer from the cache, if the PyInterpreter
|
|
// matches. If it doesn't exist, or the cache entry is not valid,
|
|
// use slow_accessor to get the real pointer value and return that
|
|
// (possibly writing it to the cache, if the cache entry is
|
|
// available.)
|
|
template <typename F>
|
|
PyObject* ptr_or(impl::PyInterpreter* self_interpreter, F slow_accessor)
|
|
const {
|
|
// Note [Memory ordering on Python interpreter tag]
|
|
impl::PyInterpreter* interpreter =
|
|
pyinterpreter_.load(std::memory_order_acquire);
|
|
if (C10_LIKELY(interpreter == self_interpreter)) {
|
|
return data_;
|
|
} else if (interpreter == nullptr) {
|
|
auto* r = slow_accessor();
|
|
impl::PyInterpreter* expected = nullptr;
|
|
// attempt to claim this cache entry with the specified interpreter tag
|
|
if (pyinterpreter_.compare_exchange_strong(
|
|
expected, self_interpreter, std::memory_order_acq_rel)) {
|
|
data_ = r;
|
|
}
|
|
// This shouldn't be possible, as you should be GIL protected
|
|
TORCH_INTERNAL_ASSERT(expected != self_interpreter);
|
|
return r;
|
|
} else {
|
|
return slow_accessor();
|
|
}
|
|
}
|
|
|
|
private:
|
|
mutable std::atomic<impl::PyInterpreter*> pyinterpreter_;
|
|
mutable PyObject* data_{nullptr};
|
|
};
|
|
|
|
} // namespace c10
|