mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Follow up doc update from https://github.com/pytorch/pytorch/pull/89812 Pull Request resolved: https://github.com/pytorch/pytorch/pull/89856 Approved by: https://github.com/ezyang, https://github.com/soulitzer
164 lines
5.7 KiB
C++
164 lines
5.7 KiB
C++
#include <torch/csrc/autograd/functions/tensor.h>
|
|
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/functions/basic_ops.h>
|
|
#include <torch/csrc/autograd/functions/utils.h>
|
|
#include <torch/csrc/autograd/graph_task.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
|
|
namespace torch {
|
|
namespace autograd {
|
|
|
|
auto CopyBackwards::apply(variable_list&& grads) -> variable_list {
|
|
check_input_variables("CopyBackwards", grads, 1, -1, true);
|
|
auto grad = c10::MaybeOwned<at::Tensor>::borrowed(grads[0]);
|
|
variable_list grad_inputs(2);
|
|
if (grad->defined()) {
|
|
if (task_should_compute_output(0)) {
|
|
grad_inputs[0] = at::zeros_like(*grad, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
|
}
|
|
if (task_should_compute_output(1)) {
|
|
// Handle R->C copies without raising a warning
|
|
const auto src_type = src_options.dtype().toScalarType();
|
|
if (!c10::isComplexType(src_type) && grad->is_complex()) {
|
|
grad = c10::MaybeOwned<at::Tensor>::owned(at::real(grads[0]));
|
|
}
|
|
|
|
at::DeviceGuard device_guard(src_options.device());
|
|
grad_inputs[1] = grad->to(src_options);
|
|
}
|
|
}
|
|
return grad_inputs;
|
|
}
|
|
|
|
CopySlices::CopySlices(
|
|
const Variable& base_var,
|
|
at::TensorGeometry view_,
|
|
std::function<at::Tensor(const at::Tensor&)> view_fn_,
|
|
std::shared_ptr<Node> fn_)
|
|
: Node(),
|
|
base(base_var),
|
|
view(std::move(view_)),
|
|
view_fn(std::move(view_fn_)),
|
|
fn(std::move(fn_)) {
|
|
// Take the next_edges of fn as our own, except for index 0 which goes
|
|
// to base instead of the view.
|
|
add_input_metadata(base_var);
|
|
const auto num_outputs = fn->num_outputs();
|
|
next_edges_.reserve(num_outputs);
|
|
add_next_edge(impl::gradient_edge(base_var));
|
|
for (const auto i : c10::irange(1, num_outputs)) {
|
|
add_next_edge(fn->next_edge(i));
|
|
}
|
|
}
|
|
|
|
auto CopySlices::apply(variable_list&& inputs) -> variable_list {
|
|
check_input_variables("CopySlices", inputs, 1, -1, true);
|
|
auto& grad = inputs[0];
|
|
if (!grad.defined()) {
|
|
return variable_list(num_outputs());
|
|
}
|
|
|
|
// Acquire lock to here protect thread safety on fn
|
|
// see Note [Thread Safety on Autograd Node]
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
|
|
if (!fn) {
|
|
throw std::runtime_error(ERR_BACKWARD_TWICE);
|
|
}
|
|
|
|
auto result =
|
|
grad.new_empty_strided_symint(base.sym_sizes(), base.sym_strides());
|
|
result.copy_(grad);
|
|
|
|
at::Tensor grad_slice;
|
|
if (view_fn) {
|
|
grad_slice = view_fn(result);
|
|
} else {
|
|
auto offset = view.sym_storage_offset() - base.sym_storage_offset();
|
|
grad_slice =
|
|
result.as_strided_symint(view.sym_sizes(), view.sym_strides(), offset);
|
|
}
|
|
|
|
// See Note [View + Inplace update for view tensor] For more details on this
|
|
// block Since the gradient edge for the 0th input is different between `this`
|
|
// and `fn`, make sure that the one from `fn` has the same metadata in the
|
|
// current GraphTask's exec_info as the one on `this`.
|
|
const auto exec_info = get_current_graph_task_exec_info();
|
|
if (exec_info && !exec_info->empty()) {
|
|
const auto& fn_edge = fn->next_edge(0);
|
|
const auto& this_edge = this->next_edge(0);
|
|
TORCH_INTERNAL_ASSERT(fn_edge.is_valid() == this_edge.is_valid());
|
|
if (fn_edge.is_valid()) {
|
|
const auto fn_next_node = fn_edge.function.get();
|
|
auto it = exec_info->find(fn_next_node);
|
|
if (it == exec_info->end()) {
|
|
// Node is not in the exec_info already
|
|
if (task_should_compute_output(0)) {
|
|
// And we need gradient for the corresponding output
|
|
add_node_to_current_graph_task_exec_info(fn_next_node);
|
|
// There is no need to remove this after execution because we are
|
|
// guaranteed that this->next_edge(0) must be in the history of
|
|
// fn->next_edge(0) (we cannot easily assert this as it might be far
|
|
// away if there were many chained views). This means that, since
|
|
// fn->next_edge(0) was not needed (no exec_info entry for it), we
|
|
// know that nothing downstream of fn->next_edge(0) is needed either
|
|
// (otherwise the whole path from that Node to this->next_edge(0)
|
|
// would be needed as well). This means that no other Node will ever
|
|
// look at fn->next_edge(0) metadata and thus there is no need to
|
|
// clean them up.
|
|
}
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(
|
|
it->second.should_execute() == task_should_compute_output(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity check that the graph was never modified after the fact (it is
|
|
// read-only!)
|
|
TORCH_INTERNAL_ASSERT(num_outputs() == fn->num_outputs());
|
|
for (const auto i : c10::irange(1, this->num_outputs())) {
|
|
TORCH_INTERNAL_ASSERT(
|
|
fn->next_edge(i).function.get() == this->next_edge(i).function.get());
|
|
}
|
|
|
|
// TODO: We clone grad_slice because we modify it below and "fn" might save
|
|
// it for the backward of res. We might be able to avoid the clone() if
|
|
// double-backprop is disabled.
|
|
auto res = (*fn)({grad_slice.clone(at::MemoryFormat::Contiguous)});
|
|
|
|
variable_list grad_inputs(num_outputs());
|
|
for (const auto i : c10::irange(res.size())) {
|
|
if (task_should_compute_output(i)) {
|
|
AT_ASSERT(res[i].defined());
|
|
if (i == 0) {
|
|
grad_slice.copy_(res[i]);
|
|
// NOLINTNEXTLINE(clang-analyzer-cplusplus.Move)
|
|
grad_inputs[i] = std::move(result); // NOLINT(bugprone-use-after-move)
|
|
} else {
|
|
grad_inputs[i] = std::move(res[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return grad_inputs;
|
|
}
|
|
|
|
void CopySlices::release_variables() {
|
|
// Acquire lock to here protect thread safety on fn
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
fn = nullptr;
|
|
}
|
|
|
|
} // namespace autograd
|
|
} // namespace torch
|