mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Test Plan: revert-hammer
Differential Revision:
D23753711 (71d1b5b0e2
)
Original commit changeset: bf3e8c54bc07
fbshipit-source-id: 192692e0d3fff4cade9983db0a1760fedfc9674c
182 lines
6.9 KiB
Python
182 lines
6.9 KiB
Python
from typing import Optional, List
|
|
import torch
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
|
|
# End-to-end tests of features in native_functions.yaml
|
|
|
|
|
|
class FloatListWrapperModule(torch.nn.Module):
|
|
def forward(self, values, incr: Optional[List[float]]):
|
|
return torch._C._nn._test_optional_floatlist(values, incr)
|
|
|
|
|
|
class IntListWrapperModule(torch.nn.Module):
|
|
def forward(self, values, incr: Optional[List[int]]):
|
|
return torch._C._nn._test_optional_intlist(values, incr)
|
|
|
|
|
|
class TestNativeFunctions(TestCase):
|
|
|
|
#
|
|
# optional float list
|
|
#
|
|
|
|
def do_test_optional_floatlist_with_module(self, module):
|
|
values = torch.tensor([1.5, 2.5], dtype=torch.float)
|
|
|
|
returned = module(values, None)
|
|
self.assertEqual(values, returned)
|
|
# Make sure that it's an alias, indicating that the operator saw a nullopt.
|
|
values[0] = 3.5
|
|
self.assertEqual(values, returned)
|
|
|
|
returned = module(values, [5.1, 4.1])
|
|
self.assertEqual(values, torch.tensor([3.5, 2.5], dtype=torch.float))
|
|
self.assertEqual(returned, torch.tensor([8.6, 6.6], dtype=torch.float))
|
|
|
|
def trace_optional_floatlist(self, const):
|
|
def wrapper(values):
|
|
return torch._C._nn._test_optional_floatlist(values, const)
|
|
return torch.jit.trace(wrapper, torch.tensor([1.5, 2.5], dtype=torch.float))
|
|
|
|
def test_optional_floatlist(self):
|
|
self.do_test_optional_floatlist_with_module(FloatListWrapperModule())
|
|
self.do_test_optional_floatlist_with_module(torch.jit.script(FloatListWrapperModule()))
|
|
|
|
traced_none = self.trace_optional_floatlist(None)
|
|
traced_list = self.trace_optional_floatlist([5.1, 4.1])
|
|
|
|
# Not really a module, just lets us use our two traced functions to handle
|
|
# the specific cases of passing None and [5.1, 4.1].
|
|
def fake_module(values, const):
|
|
if const is None:
|
|
return traced_none(values)
|
|
if const == [5.1, 4.1]:
|
|
return traced_list(values)
|
|
raise Exception("Invalid argument")
|
|
|
|
self.do_test_optional_floatlist_with_module(fake_module)
|
|
|
|
def test_optional_floatlist_invalid(self):
|
|
with self.assertRaisesRegex(TypeError, "must be .* but found"):
|
|
FloatListWrapperModule()(torch.zeros(1), ["hi"])
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
|
|
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), ["hi"])
|
|
|
|
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
|
|
FloatListWrapperModule()(torch.zeros(1), torch.zeros(1))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
|
|
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), torch.zeros(1))
|
|
|
|
#
|
|
# optional int list
|
|
#
|
|
|
|
def do_test_optional_intlist_with_module(self, module):
|
|
values = torch.tensor([1, 2], dtype=torch.int)
|
|
|
|
returned = module(values, None)
|
|
self.assertEqual(values, returned)
|
|
# Make sure that it's an alias, indicating that the operator saw a nullopt.
|
|
values[0] = 3
|
|
self.assertEqual(values, returned)
|
|
|
|
returned = module(values, [5, 4])
|
|
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
|
|
self.assertEqual(returned, torch.tensor([8, 6], dtype=torch.int))
|
|
|
|
def trace_optional_intlist(self, const):
|
|
def wrapper(values):
|
|
return torch._C._nn._test_optional_intlist(values, const)
|
|
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
|
|
|
|
def test_optional_intlist(self):
|
|
self.do_test_optional_intlist_with_module(IntListWrapperModule())
|
|
self.do_test_optional_intlist_with_module(torch.jit.script(IntListWrapperModule()))
|
|
|
|
traced_none = self.trace_optional_intlist(None)
|
|
traced_list = self.trace_optional_intlist([5, 4])
|
|
|
|
# Not really a module, just lets us use our two traced functions to handle
|
|
# the specific cases of passing None and [5, 4].
|
|
def fake_module(values, const):
|
|
if const is None:
|
|
return traced_none(values)
|
|
if const == [5, 4]:
|
|
return traced_list(values)
|
|
raise Exception("Invalid argument")
|
|
|
|
self.do_test_optional_intlist_with_module(fake_module)
|
|
|
|
def test_optional_intlist_invalid(self):
|
|
with self.assertRaisesRegex(TypeError, "must be .* but found"):
|
|
IntListWrapperModule()(torch.zeros(1), [0.5])
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
|
|
torch.jit.script(IntListWrapperModule())(torch.zeros(1), [0.5])
|
|
|
|
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
|
|
IntListWrapperModule()(torch.zeros(1), torch.zeros(1))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
|
|
torch.jit.script(IntListWrapperModule())(torch.zeros(1), torch.zeros(1))
|
|
|
|
#
|
|
# optional filled int list
|
|
#
|
|
|
|
def do_test_optional_filled_intlist_with_module(self, module):
|
|
values = torch.tensor([1, 2], dtype=torch.int)
|
|
|
|
returned = module(values, None)
|
|
self.assertEqual(values, returned)
|
|
# Make sure that it's an alias, indicating that the operator saw a nullopt.
|
|
values[0] = 3
|
|
self.assertEqual(values, returned)
|
|
|
|
returned = module(values, 10)
|
|
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
|
|
self.assertEqual(returned, torch.tensor([13, 12], dtype=torch.int))
|
|
|
|
def trace_optional_filled_intlist(self, const):
|
|
def wrapper(values):
|
|
return torch._C._nn._test_optional_filled_intlist(values, const)
|
|
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
|
|
|
|
def test_optional_filled_intlist(self):
|
|
|
|
def f(n: int):
|
|
x = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), (n, n))
|
|
y = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), n)
|
|
return x, y
|
|
|
|
# eager
|
|
returned = f(10)
|
|
self.assertEqual(returned[0], returned[1])
|
|
|
|
# scripted
|
|
s = torch.jit.script(f)
|
|
returned = s(10)
|
|
self.assertEqual(returned[0], returned[1])
|
|
|
|
# traced
|
|
traced_none = self.trace_optional_filled_intlist(None)
|
|
traced_int = self.trace_optional_filled_intlist(10)
|
|
|
|
# Not really a module, just lets us use our two traced functions to handle
|
|
# the specific cases of passing None and 10.
|
|
def fake_module(values, const):
|
|
if const is None:
|
|
return traced_none(values)
|
|
if const == 10:
|
|
return traced_int(values)
|
|
raise Exception("Invalid argument")
|
|
|
|
self.do_test_optional_filled_intlist_with_module(fake_module)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|