Files
pytorch/torch/_inductor/codegen/multi_kernel.py
bobrenjc93 5221448574 multi-kernel matmuls based on varying hint sizes (#156628)
The core idea is to generate multiple matmul kernels using different hints for symbolic variables, then select the most appropriate one at runtime for each unique shape we encounter. You can find some early experimentation details in these posts:

https://fb.workplace.com/groups/8940092306109185/posts/9803850776399996/
https://fb.workplace.com/groups/8940092306109185/posts/9695805170537891/
https://fb.workplace.com/groups/257735836456307/posts/906589324904285/

Here’s a graph illustrating the empirically observed worst-case performance if an oracle always selected the least optimal hint for a given runtime size:

![image](https://github.com/user-attachments/assets/6d90ee06-a572-453e-9cba-03006f343301)

This graph illustrates the performance of a hint size of 64 relative to the worst case. Notice that as the runtime sizes increase, the performance gradually approaches the worst case:

![image](https://github.com/user-attachments/assets/85ad49fe-165a-474c-8d03-db2e57654213)

This graph shows the performance of a hint size of 4096 — very poor for small sizes, and also suboptimal for some mid-sized shapes:

![image](https://github.com/user-attachments/assets/adea1106-3bc8-40f3-97b0-20d940fb74f1)

Finally, here’s the graph that motivated this PR. It illustrates the performance when selecting the best of three kernels generated with three different hints — 64, 256, and 4096:

![image](https://github.com/user-attachments/assets/a7cb0ce5-8139-48b1-b5c9-7670e75cbfce)

## How to review this PR

At a high level, this extends @shunting314's multi-kernel abstraction to support varying GEMM choices driven by different hints. A few key points:

1. Unlike reduction kernels, triton template matmuls pass their grid as arguments to the kernel. This PR updates `MultiKernelCall` to support kernels with varying arguments.
2. The `V.graph.sizevars.size_hints` API is extended to accept a `hint_override`, allowing us to substitute the example input’s size hint with a custom value when generating multiple kernels.
3. The choice generation and benchmarking logic is updated to support multiple hint values. One kernel is generated per value in `torch._inductor.config.multi_kernel_hints`, and at runtime, we select the most suitable kernel for the current shape.
4. This PR does not add support for cpp wrapper codegen to keep it scoped. That will be added in the next PR.

## Results

The following is a basic test that shows our basic multi kernel working where we no longer show significant variance based on the original hint size: https://gist.github.com/bobrenjc93/ba711d529e65fd65839b34799f6323ec

Before
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0948   |   0.3124   |   4.9477
    256      |   0.2243   |   0.2256   |   3.3880
    4096     |   0.3384   |   0.3404   |   3.3010
```

After
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0951   |   0.2289   |   3.3013
    256      |   0.0952   |   0.2258   |   3.4045
    4096     |   0.0957   |   0.2231   |   3.3146
```

We also see an average speedup of 5.04% for the matrix of all hint/runtime pairs in [64, 4096] for every increment of 64: https://docs.google.com/spreadsheets/d/12TmYUDrAAFASGuP3POXTKPeAvQWIRzKzdrVSIb3vQkA/edit?gid=480268938#gid=480268938

![Worst Case, multi-kernel](https://github.com/user-attachments/assets/712df23b-87e2-4d9d-95c2-cc25305ba2ed)

NB: This is just the beginning and I plan on doing more investigation to see further improve on this initial result.

For posterity the script used to generate that matrix is here: https://gist.github.com/bobrenjc93/c211fd0bd97fad8f46b91ad9dee76ad0

HUD benchmark runs:
base: https://github.com/pytorch/pytorch/actions/runs/15889871988
head: https://github.com/pytorch/pytorch/actions/runs/15889876842

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156628
Approved by: https://github.com/jansel
2025-07-12 15:08:21 +00:00

514 lines
19 KiB
Python

# mypy: allow-untyped-defs
import functools
import logging
import os
import pathlib
from torch._inductor.ir import MultiTemplateBuffer
from torch._inductor.metrics import get_metric_table, is_metric_table_enabled
from torch.utils._ordered_set import OrderedSet
from .. import config
from ..codecache import code_hash, CodeCacheFuture, get_path, write_atomic
from ..runtime.benchmarking import benchmarker
from ..utils import cache_on_self, IndentedBuffer
from ..virtualized import V
from .common import TensorArg, WorkspaceArg
log = logging.getLogger(__name__)
class MultiKernelState:
"""
Maintain state of multi-kernel compilation so we don't define duplicated
multi-kernel for the same set of sub-kernels.
V.graph.wrapper_code has a reference to MultiKernelState instance.
"""
def __init__(self):
self.subkernel_to_kernel_name = {}
self.kernel_defs = IndentedBuffer()
def define_kernel(self, kernels):
"""
Previously we name the multi kernel as "multi_kernel_{kernel_names[0]}".
This has some minor issue.
E.g. for persistent reduction https://gist.github.com/shunting314/39e7c00ff8bb2055942ed5a3255d61ca ,
there are 2 flavors of non-persistent reduction:
https://gist.github.com/shunting314/056d43d35907e87efb883970b35c17d4
and
https://gist.github.com/shunting314/02ee753b65c513c54e695626afe682bd
The only different is cache eviction policy.
We should name the multi-kernel differently in these 2 cases.
"""
# Prevent circular import
from ..select_algorithm import TritonTemplateKernel
kernel_names = tuple(k.kernel_name for k in kernels)
if kernel_names in self.subkernel_to_kernel_name:
return self.subkernel_to_kernel_name[kernel_names]
# name the multi kernel based on the first kernel
multi_kernel_name = f"multi_kernel_{len(self.subkernel_to_kernel_name)}"
self.subkernel_to_kernel_name[kernel_names] = multi_kernel_name
if V.graph.cpp_wrapper and not config.triton.autotune_at_compile_time:
# we should not generate any python code for multi-kernel during
# the second pass of cpp-wrapper.
return multi_kernel_name
arg_index: dict[int, list[slice]] = {}
_, call_args, _, arg_types = kernels[0].args.python_argdefs()
if isinstance(kernels[0], TritonTemplateKernel) and isinstance(
kernels[0].output_node, MultiTemplateBuffer
):
for i, kernel in enumerate(kernels):
additional_call_args, additional_arg_types = (
kernel.additional_call_args_and_types()
)
if i not in arg_index:
arg_index[i] = []
arg_index[i].append(slice(0, len(call_args)))
arg_index[i].append(
slice(
len(call_args) + i * len(additional_call_args),
len(call_args) + (i + 1) * len(additional_call_args),
)
)
else:
kernels[0].add_numel_to_call_args(multi_kernel_name, call_args, arg_types)
for i in range(len(kernels)):
arg_index[i] = [slice(0, len(call_args))]
shape_specialize = isinstance(kernels[0], TritonTemplateKernel)
buf = self.kernel_defs
buf.writeline("")
buf.writeline("arg_index = {")
for key, slice_list in arg_index.items():
slice_reprs = ", ".join(repr(s) for s in slice_list)
buf.writeline(f" {key}: [{slice_reprs}],")
buf.writeline("}")
buf.writeline(
f"{multi_kernel_name} = async_compile.multi_kernel({multi_kernel_name!r}, ["
)
with buf.indent():
for name in kernel_names:
buf.writeline(f"{name},")
buf.writeline(f"], arg_index=arg_index, shape_specialize={shape_specialize})")
if config.triton.autotune_at_compile_time:
V.graph.wrapper_code.src_to_kernel["\n".join(kernel_names)] = (
multi_kernel_name
)
return multi_kernel_name
class MultiKernel:
"""
This class maintains the compile time state for multi kernels.
Assume we do codegen for a MultiKernel encapsulating kernel1 and kernel2.
The generated definition for the multi-kernel will looks like:
```
multi_kernel_kernel1 = MultiKernelCall(
[kernel1, kernel2], multi_kernel_definition_code
)
```
Here is a concrete example: https://gist.github.com/shunting314/d9f3fb6bc6cee3dbae005825ca196d39
"""
def __init__(self, kernels):
assert len(kernels) >= 2
self.kernels = kernels
self.kernel_name = V.graph.wrapper_code.multi_kernel_state.define_kernel(
kernels
)
# need this since some code in inductor check if the kernel object has an args
# attribute to decide if it's a non-null kernel.
self.args = object()
@staticmethod
def _merge_workspace_args(left: list[WorkspaceArg], right: list[WorkspaceArg]):
if left == right:
return left
result = {x.inner_name: x for x in left}
for arg in right:
if arg.inner_name in result:
result[arg.inner_name] = WorkspaceArg.maximum(
result[arg.inner_name], arg
)
else:
result[arg.inner_name] = arg
return [*result.values()]
@staticmethod
def merge_workspaces_inplace(kernels):
if len(kernels) < 2:
return
# All kernels must share the same workspace
workspace_args = functools.reduce(
MultiKernel._merge_workspace_args,
[kernel.args.workspace_args for kernel in kernels],
)
for kernel in kernels:
kernel.args.workspace_args = workspace_args
return workspace_args
def call_kernel(self, kernel_name):
"""
Collect the union of arguments from all subkernels as the arguments
for the multi-kernel.
"""
# Prevent circular import
from ..select_algorithm import TritonTemplateKernel
assert kernel_name == self.kernel_name
V.graph.wrapper_code.write_triton_header_once()
_, call_args, _, arg_types = self.kernels[0].args.python_argdefs()
for kernel in self.kernels[1:]:
_, other_call_args, _, other_arg_types = kernel.args.python_argdefs()
assert call_args == other_call_args, (call_args, other_call_args)
assert arg_types == other_arg_types
if V.graph.cpp_wrapper and not config.triton.autotune_at_compile_time:
# for the second pass of cpp-wrapper codegen, we should call
# the fast kernel directly
kernel_name = MultiKernelCall.lookup_choice(self.kernel_name)
if isinstance(self.kernels[0], TritonTemplateKernel) and isinstance(
self.kernels[0].output_node, MultiTemplateBuffer
):
# For matmuls the grid arguments are passed in as additional arguments
# to the kernel run method. These grids change based on the various
# parameters of the matmul. So we need to pass each kernel's grid into
# the multi call kernel.
multi_call_args = call_args
multi_call_arg_types = arg_types
for i, kernel in enumerate(self.kernels):
additional_call_args, additional_arg_types = (
kernel.additional_call_args_and_types()
)
multi_call_args.extend(list(additional_call_args))
multi_call_arg_types.extend(list(additional_arg_types))
else:
# numels for all subkernels should be the same. Use kernels[0] here
self.kernels[0].add_numel_to_call_args(kernel_name, call_args, arg_types)
multi_call_args = call_args
multi_call_arg_types = arg_types
for ws in self.kernels[0].args.workspace_args:
V.graph.wrapper_code.generate_workspace_allocation(ws)
if V.graph.cpp_wrapper:
# We have already selected the best kernel at compile time
# so we only have one set of call args. NB: this currently
# doesn't work with MultiTemplateBuffer kernels. @bobrenjc93
# will add it in a subsequent PR.
V.graph.wrapper_code.generate_kernel_call(
kernel_name, call_args, arg_types=arg_types
)
else:
V.graph.wrapper_code.generate_kernel_call(
kernel_name, multi_call_args, arg_types=multi_call_arg_types
)
for ws in reversed(self.kernels[0].args.workspace_args):
V.graph.wrapper_code.generate_workspace_deallocation(ws)
def codegen_nan_check(self):
wrapper = V.graph.wrapper_code
seen: OrderedSet[str] = OrderedSet()
for k in self.kernels:
_, call_args, precompile_args, _ = k.args.python_argdefs()
for arg, precompile_arg in zip(call_args, precompile_args):
if arg in seen:
continue
seen.add(arg)
if isinstance(precompile_arg, TensorArg):
line = f"assert not {arg}.isnan().any().item()"
wrapper.writeline(line)
line = f"assert not {arg}.isinf().any().item()"
wrapper.writeline(line)
@property
def removed_buffers(self):
return OrderedSet.intersection(*[k.removed_buffers for k in self.kernels])
@property
def inplaced_to_remove(self):
return OrderedSet.intersection(*[k.inplaced_to_remove for k in self.kernels])
@property
@cache_on_self
def inplace_update_buffers(self):
"""
Make sure all kernels have the same inplace update mappings.
"""
for k in self.kernels[1:]:
assert k.inplace_update_buffers == self.kernels[0].inplace_update_buffers
return self.kernels[0].inplace_update_buffers
def warn_mix_layout(self, kernel_name: str):
pass
class MultiKernelCall:
"""
This class is called at run time to actually run the kernel
"""
def __init__(self, multi_kernel_name, kernels, arg_index, shape_specialize=False):
assert len(kernels) >= 2
self._kernels = kernels
self.multi_kernel_name = multi_kernel_name
self.disable_cache = os.environ.get(
"TORCHINDUCTOR_DISABLE_MULTI_KERNEL_CACHE"
) == "1" or is_metric_table_enabled("persistent_red_perf")
self.picked_kernel = None
self.arg_index = arg_index
if config.triton.multi_kernel > 1:
# manually force a subkernel to ease perf testing
picked_by_config = config.triton.multi_kernel - 2
assert picked_by_config < len(self._kernels)
self.picked_kernel = picked_by_config
elif not self.disable_cache:
self.load_cache()
self._recorded = False
# This means for each unique shape we will do a separate assessment
# for which kernel is the best. This is particularly useful for matmul
# kernels where the best kernel can vary based on very small differences
# in shape.
self._shape_specialize = shape_specialize
self._shape_cache = {}
def cache_file_path(self):
key = code_hash(
",".join(
[
f"{k.fn.cache_key}{k.size_hints!r}{k.triton_meta!r}"
for k in self.kernels
]
)
)
_, _, path = get_path(key, "picked_kernel")
return pathlib.Path(path)
def load_cache(self):
assert self.picked_kernel is None
path = self.cache_file_path()
if path.exists():
with path.open() as fd:
self.picked_kernel = int(fd.read())
assert self.picked_kernel >= 0 and self.picked_kernel < len(
self._kernels
)
log.debug(
"Load picked kernel %d from cache file %s", self.picked_kernel, path
)
def store_cache(self):
assert self.picked_kernel is not None
path = self.cache_file_path()
path.parent.mkdir(parents=True, exist_ok=True)
write_atomic(path, str(self.picked_kernel))
log.debug("Store picked kernel %d to cache file %s", self.picked_kernel, path)
@property
def kernels(self):
"""
Read results from future.
This should be called after parallel compilation is done.
In case you call this before compilation is done,
it may slow down the parallel compilation.
"""
for i, kernel in enumerate(self._kernels):
if isinstance(kernel, CodeCacheFuture):
self._kernels[i] = kernel.result()
return self._kernels
def benchmark_sub_kernels(self, *args, **kwargs):
"""
Benchmark all the sub kernels and return the execution time
(in milliseconds) for each of time.
Unit test may mock this method to force a specific kernel to
be picked.
"""
def wrap_fn(kernel, index):
def inner():
filtered_args = self._get_filtered_args(args, index)
args_clone, kwargs_clone = kernel.clone_args(*filtered_args, **kwargs)
return kernel.run(*args_clone, **kwargs_clone)
return inner
return [
benchmarker.benchmark_gpu(wrap_fn(kernel, index), rep=40)
for index, kernel in enumerate(self.kernels)
]
def _get_filtered_args(self, args, index):
"""
We pass in all arguments to all kernels into the MultiKernelCall
so when invoking a particular kernel we need to filter to only the
arguments for that specific kernel.
"""
# This is sometimes invoked at runtime where V.graph is
# a NullHandler
if hasattr(V.graph, "cpp_wrapper") and V.graph.cpp_wrapper:
# for cpp-wrapper, we should not filter the args since
# we already have chosen a single kernel and arg set.
return args
return [item for s in self.arg_index[index] for item in args[s]]
# record_choice and lookup_choice are helper functions for cpp-wrapper
# codegen. The first pass use record_choice to keep the choice and
# the second pass do lookup by calling lookup_choice.
#
# An alternative that reused the multi-kernel cache does not work well
# since during codegen of the second pass, it's very hard to know the
# path for the cache file. Also reading the cache file need do some IO
# which can be slower.
@staticmethod
def record_choice(multi_kernel_name: str, picked_kernel_name: str):
"""
Record the multi-kernel choice for cpp-wrapper after autotuning
We should do nothing if this function is not called during codegen.
"""
from torch._inductor.graph import GraphLowering
if not isinstance(V.graph, GraphLowering):
return
if not V.graph.record_multi_kernel_choice:
return
V.graph.multi_kernel_to_choice[multi_kernel_name] = picked_kernel_name
@staticmethod
def lookup_choice(multi_kernel_name: str) -> str:
# this should always been done during cpp-wrapper codegen
assert (
V.graph.record_multi_kernel_choice
and multi_kernel_name in V.graph.multi_kernel_to_choice
)
# there should be no miss
return V.graph.multi_kernel_to_choice[multi_kernel_name]
def run(self, *args, **kwargs):
if self._shape_specialize:
cache_key = self._get_shape_cache_key(*args, **kwargs)
cached_choice = self._get_cached_shape_choice(cache_key)
if cached_choice is not None:
self.picked_kernel = cached_choice
log.debug(
"using cached shape-specialized choice %dth sub-kernel in %s. Cache key: %s",
self.picked_kernel,
[k.inductor_meta.get("kernel_name") for k in self.kernels],
cache_key,
)
else:
self._select_kernel_by_shape(*args, **kwargs)
if self.picked_kernel is None:
timings = self.benchmark_sub_kernels(*args, **kwargs)
self.picked_kernel = timings.index(min(timings))
k0 = self.kernels[0]
log.debug(
"pick %dth sub-kernel in %s. Size hints %s. Reduction hint %s. Timings %s",
self.picked_kernel,
[k.inductor_meta.get("kernel_name") for k in self.kernels],
k0.size_hints,
k0.inductor_meta.get("reduction_hint"),
timings,
)
get_metric_table("persistent_red_perf").add_row(
functools.partial(self._metrics_table_row, timings)
)
if not self.disable_cache:
self.store_cache()
if not self._recorded:
self._recorded = True
picked_kernel_name = self.kernels[self.picked_kernel].inductor_meta.get(
"kernel_name"
)
assert picked_kernel_name is not None
self.record_choice(self.multi_kernel_name, picked_kernel_name)
run = self.kernels[self.picked_kernel].run # type: ignore[method-assign]
filtered_args = self._get_filtered_args(args, self.picked_kernel)
run(*filtered_args, **kwargs)
def _get_shape_cache_key(self, *args, **kwargs):
"""
Generate a cache key based on tensor shapes for shape-specialized dispatch.
"""
shapes = []
for arg in args:
if hasattr(arg, "shape"):
shapes.append(tuple(arg.shape))
return tuple(shapes)
def _get_cached_shape_choice(self, cache_key):
"""
Get cached kernel choice for a specific shape.
"""
return self._shape_cache.get(cache_key)
def _cache_shape_choice(self, cache_key, kernel_idx):
"""
Cache kernel choice for a specific shape
"""
self._shape_cache[cache_key] = kernel_idx
def _select_kernel_by_shape(self, *args, **kwargs):
"""
Benchmark kernels for a particular shape and return the
best kernel for this shape.
"""
shape_key = self._get_shape_cache_key(*args, **kwargs)
timings = self.benchmark_sub_kernels(*args, **kwargs)
self.picked_kernel = timings.index(min(timings))
self._cache_shape_choice(shape_key, self.picked_kernel)
def _metrics_table_row(self, timings):
def get_kernel_path(k):
return k.fn.fn.__code__.co_filename
k0 = self.kernels[0]
row = {
"size_hints": k0.size_hints,
"reduction_hint": k0.inductor_meta.get("reduction_hint"),
}
max_kernels = 4
assert len(timings) <= max_kernels
for i in range(max_kernels):
if i < len(self.kernels):
row[f"kernel{i}_path"] = get_kernel_path(self.kernels[i])
row[f"kernel{i}_latency"] = timings[i]
else:
row[f"kernel{i}_path"] = ""
row[f"kernel{i}_latency"] = ""
return row