mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
A later PR will then make the handle abstract and able to use either cudaMalloc or expandable segments. Pull Request resolved: https://github.com/pytorch/pytorch/pull/130888 Approved by: https://github.com/dsjohns2
693 lines
24 KiB
C++
693 lines
24 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#ifdef _MSC_VER
|
|
#include <c10/util/win32-headers.h>
|
|
#endif
|
|
#include <structmember.h>
|
|
|
|
#include <c10/core/CPUAllocator.h>
|
|
#include <libshm.h>
|
|
#include <torch/csrc/CudaIPCTypes.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/autograd/utils/wrap_outputs.h>
|
|
#include <torch/csrc/copy_utils.h>
|
|
|
|
#include <c10/util/intrusive_ptr.h>
|
|
#include <fmt/format.h>
|
|
|
|
#include <torch/csrc/Storage.h>
|
|
#include <torch/csrc/StorageSharing.h>
|
|
|
|
#ifdef USE_CUDA
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#endif
|
|
|
|
#include <ATen/MapAllocator.h>
|
|
#include <ATen/StorageUtils.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <atomic>
|
|
#include <string>
|
|
|
|
static PyObject* THPStorage_sharedDecref(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
c10::DeviceType device_type = storage.device_type();
|
|
if (device_type == at::kCPU) {
|
|
THManagedMapAllocator* ctx =
|
|
THManagedMapAllocator::fromDataPtr(storage.data_ptr());
|
|
if (ctx) {
|
|
ctx->decref();
|
|
}
|
|
}
|
|
Py_INCREF(self);
|
|
return self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_sharedIncref(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
c10::DeviceType device_type = storage.device_type();
|
|
if (device_type == at::kCPU) {
|
|
THManagedMapAllocator* ctx =
|
|
THManagedMapAllocator::fromDataPtr(storage.data_ptr());
|
|
if (ctx) {
|
|
ctx->incref();
|
|
}
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_pyNewFilenameStorage(
|
|
PyObject* _unused,
|
|
PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
long long size = 0;
|
|
if (!PyArg_ParseTuple(args, "L", &size)) {
|
|
return nullptr;
|
|
}
|
|
if (size < 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_EXCLUSIVE;
|
|
std::string handle = at::NewProcessWideShmHandle();
|
|
return THPStorage_NewWithStorage(
|
|
THPStorageClass,
|
|
c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
size,
|
|
THManagedMapAllocator::makeDataPtr(
|
|
"", handle.c_str(), flags, static_cast<size_t>(size)),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false),
|
|
c10::impl::PyInterpreterStatus::TAGGED_BY_US);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_shareFilename(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
TORCH_CHECK(
|
|
storage.device_type() == at::kCPU,
|
|
"_share_filename_: only available on CPU");
|
|
THManagedMapAllocator* ctx =
|
|
THManagedMapAllocator::fromDataPtr(storage.data_ptr());
|
|
// Storage is already in shared memory, just return a handle
|
|
if (ctx) {
|
|
// done
|
|
} else {
|
|
// TODO: retry on collision
|
|
// TODO: free GIL - but remember to reacquire it when an exception is thrown
|
|
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_EXCLUSIVE;
|
|
std::string handle = at::NewProcessWideShmHandle();
|
|
// Create a new storage in shared memory
|
|
at::Storage new_storage(c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
storage.nbytes(),
|
|
THManagedMapAllocator::makeDataPtr(
|
|
"", handle.c_str(), flags, storage.nbytes()),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false));
|
|
|
|
{
|
|
// Copying into shared memory can be slow, so release the GIL
|
|
pybind11::gil_scoped_release no_gil;
|
|
// Copy data from old storage into the new one
|
|
at::storage_copy(new_storage, storage);
|
|
}
|
|
|
|
// Replace the old data_ptr and allocator with the new ones
|
|
storage.set_data_ptr(std::move(new_storage.mutable_data_ptr()));
|
|
storage.unsafeGetStorageImpl()->set_allocator(new_storage.allocator());
|
|
|
|
ctx = THManagedMapAllocator::fromDataPtr(storage.data_ptr());
|
|
AT_ASSERT(ctx);
|
|
}
|
|
|
|
THPObjectPtr manager_handle(PyBytes_FromString(ctx->manager_handle()));
|
|
if (!manager_handle)
|
|
return nullptr;
|
|
THPObjectPtr storage_handle(PyBytes_FromString(ctx->filename()));
|
|
if (!storage_handle)
|
|
return nullptr;
|
|
THPObjectPtr size(THPUtils_packUInt64(storage.nbytes()));
|
|
if (!size)
|
|
return nullptr;
|
|
|
|
THPObjectPtr tuple(PyTuple_New(3));
|
|
if (!tuple)
|
|
return nullptr;
|
|
PyTuple_SET_ITEM(tuple.get(), 0, manager_handle.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 1, storage_handle.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 2, size.release());
|
|
return tuple.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_newSharedFilename(
|
|
PyObject* _unused,
|
|
PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(PyTuple_GET_SIZE(args) == 3, "tuple of 3 items expected");
|
|
PyObject* _manager_handle = PyTuple_GET_ITEM(args, 0);
|
|
PyObject* _object_handle = PyTuple_GET_ITEM(args, 1);
|
|
PyObject* _size = PyTuple_GET_ITEM(args, 2);
|
|
if (!PyBytes_Check(_manager_handle) || !PyBytes_Check(_object_handle) ||
|
|
!THPUtils_checkLong(_size)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"_new_shared in file system mode",
|
|
1,
|
|
"a handle (string/bytes) and storage size (int)");
|
|
return nullptr;
|
|
}
|
|
const char* manager_handle = PyBytes_AS_STRING(_manager_handle);
|
|
const char* object_handle = PyBytes_AS_STRING(_object_handle);
|
|
uint64_t size = THPUtils_unpackUInt64(_size);
|
|
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
|
|
return THPStorage_NewWithStorage(
|
|
THPStorageClass,
|
|
c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
size,
|
|
THManagedMapAllocator::makeDataPtr(
|
|
manager_handle, object_handle, flags, size),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false),
|
|
c10::impl::PyInterpreterStatus::TAGGED_BY_US);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_pyNewFdStorage(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
long long size = 0;
|
|
if (!PyArg_ParseTuple(args, "L", &size)) {
|
|
return nullptr;
|
|
}
|
|
if (size < 0) {
|
|
return nullptr;
|
|
}
|
|
return THPStorage_NewWithStorage(
|
|
THPStorageClass,
|
|
at::new_shm_fd_storage(size),
|
|
c10::impl::PyInterpreterStatus::TAGGED_BY_US);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_shareFd(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
TORCH_CHECK(
|
|
storage.device_type() == at::kCPU, "_share_fd_: only available on CPU");
|
|
at::MapAllocator* ctx = at::MapAllocator::fromDataPtr(storage.data_ptr());
|
|
// Storage is already in shared memory, just return a handle
|
|
if (ctx) {
|
|
// done
|
|
} else {
|
|
at::Storage new_storage(at::new_shm_fd_storage(storage.nbytes()));
|
|
{
|
|
// Copying into shared memory can be slow, so release the GIL
|
|
pybind11::gil_scoped_release no_gil;
|
|
// Copy data from old storage into the new one
|
|
at::storage_copy(new_storage, storage);
|
|
}
|
|
|
|
// Replace the old data_ptr and allocator with the new ones
|
|
storage.set_data_ptr(std::move(new_storage.mutable_data_ptr()));
|
|
storage.unsafeGetStorageImpl()->set_allocator(new_storage.allocator());
|
|
|
|
ctx = at::MapAllocator::fromDataPtr(storage.data_ptr());
|
|
AT_ASSERT(ctx);
|
|
}
|
|
|
|
THPObjectPtr storage_handle(THPUtils_packInt32(ctx->fd()));
|
|
if (!storage_handle)
|
|
return nullptr;
|
|
THPObjectPtr size(THPUtils_packUInt64(storage.nbytes()));
|
|
if (!size)
|
|
return nullptr;
|
|
|
|
THPObjectPtr tuple(PyTuple_New(2));
|
|
if (!tuple)
|
|
return nullptr;
|
|
PyTuple_SET_ITEM(tuple.get(), 0, storage_handle.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 1, size.release());
|
|
return tuple.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_newSharedFd(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(PyTuple_GET_SIZE(args) == 2, "tuple of 2 items expected");
|
|
PyObject* _tmp_fd = PyTuple_GET_ITEM(args, 0);
|
|
PyObject* _size = PyTuple_GET_ITEM(args, 1);
|
|
if (!THPUtils_checkLong(_tmp_fd) || !THPUtils_checkLong(_size)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"_new_shared in file descriptor mode",
|
|
1,
|
|
"a file descriptor (int) and storage size (int)");
|
|
return nullptr;
|
|
}
|
|
int tmp_fd = (int)THPUtils_unpackLong(_tmp_fd);
|
|
int64_t size = THPUtils_unpackLong(_size);
|
|
int fd = dup(tmp_fd);
|
|
if (fd == -1) {
|
|
THPUtils_setError("could not duplicate a shared memory file descriptor");
|
|
return nullptr;
|
|
}
|
|
|
|
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE |
|
|
at::ALLOCATOR_MAPPED_KEEPFD | at::ALLOCATOR_MAPPED_FROMFD;
|
|
return THPStorage_NewWithStorage(
|
|
THPStorageClass,
|
|
c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
size,
|
|
at::MapAllocator::makeDataPtr(
|
|
at::WITH_FD, "", fd, flags, size, nullptr),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false),
|
|
c10::impl::PyInterpreterStatus::TAGGED_BY_US);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_shareCuda(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
#ifdef USE_CUDA
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
TORCH_CHECK(
|
|
storage.device_type() == at::kCUDA,
|
|
"_share_cuda_: only available on CUDA");
|
|
c10::StorageImpl* storage_impl = storage.unsafeGetStorageImpl();
|
|
|
|
if (storage_impl->received_cuda()) {
|
|
AT_ERROR(
|
|
"Attempted to send CUDA tensor received from another process; this is not currently supported. Consider cloning before sending.");
|
|
}
|
|
|
|
at::DeviceGuard device_guard(storage.device());
|
|
THPObjectPtr tuple(PyTuple_New(8));
|
|
THPObjectPtr device(THPUtils_packInt32(storage.device().index()));
|
|
THPObjectPtr _handle(Py_None);
|
|
Py_INCREF(Py_None);
|
|
THPObjectPtr size_bytes(THPUtils_packUInt64(storage.nbytes()));
|
|
THPObjectPtr _offset_bytes(THPUtils_packInt32(0));
|
|
THPObjectPtr _ref_counter(Py_None);
|
|
Py_INCREF(Py_None);
|
|
THPObjectPtr _ref_counter_offset(THPUtils_packInt32(0));
|
|
THPObjectPtr _event_handle(Py_None);
|
|
Py_INCREF(Py_None);
|
|
THPObjectPtr _event_sync_required(Py_None);
|
|
Py_INCREF(Py_None);
|
|
if (storage.data()) {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
auto shandle =
|
|
c10::cuda::CUDACachingAllocator::shareIpcHandle(storage.mutable_data());
|
|
_handle = PyBytes_FromStringAndSize(
|
|
shandle.handle.c_str(), (Py_ssize_t)shandle.handle.size());
|
|
_offset_bytes = PyLong_FromSsize_t((Py_ssize_t)shandle.offset);
|
|
|
|
// Put Storage Data behind new ref counting context
|
|
// See Note [CUDA IPC Refcounting implementation explained]
|
|
at::DataPtr sent_data_ptr = torch::GetNewRefCountedSentData(
|
|
storage.mutable_data(), storage.device());
|
|
auto old_data_ptr = storage.set_data_ptr(std::move(sent_data_ptr));
|
|
auto sent_data =
|
|
static_cast<torch::CudaIPCSentData*>(storage.data_ptr().get_context());
|
|
sent_data->set_original_ptr(std::move(old_data_ptr));
|
|
_ref_counter = PyBytes_FromString((sent_data->handle()).c_str());
|
|
_ref_counter_offset = THPUtils_packUInt64(sent_data->offset());
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cudaIpcEventHandle_t ipc_event_handle;
|
|
|
|
if (sent_data->event_sync_required_) {
|
|
C10_CUDA_CHECK(
|
|
cudaIpcGetEventHandle(&ipc_event_handle, sent_data->event_));
|
|
}
|
|
|
|
_event_handle = PyBytes_FromStringAndSize(
|
|
(char*)&ipc_event_handle, CUDA_IPC_HANDLE_SIZE);
|
|
_event_sync_required = PyBool_FromLong(sent_data->event_sync_required_);
|
|
}
|
|
|
|
if (!tuple || !device || !_handle || !size_bytes || !_offset_bytes ||
|
|
!_event_handle) {
|
|
return nullptr;
|
|
}
|
|
PyTuple_SET_ITEM(tuple.get(), 0, device.release());
|
|
// cudaIpcMemHandle_t(of basePtr)
|
|
PyTuple_SET_ITEM(tuple.get(), 1, _handle.release());
|
|
// Size(in bytes) of the real storage, note this is not the size of basePtr
|
|
// memory block.
|
|
PyTuple_SET_ITEM(tuple.get(), 2, size_bytes.release());
|
|
// Offset(in bytes) of the real storage in the basePtr memory block.
|
|
// NB: this offset MUST be in bytes instead of numel, since we use
|
|
// (storage_handle, offset)
|
|
// as key in shared_cache(multiprocessing/reduction.py).
|
|
// Offset in numel cannot uniquely represent a storage.
|
|
PyTuple_SET_ITEM(tuple.get(), 3, _offset_bytes.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 4, _ref_counter.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 5, _ref_counter_offset.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 6, _event_handle.release());
|
|
PyTuple_SET_ITEM(tuple.get(), 7, _event_sync_required.release());
|
|
return tuple.release();
|
|
#else
|
|
TORCH_CHECK(false, "CUDA is not available");
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_releaseIPCCounter(
|
|
PyObject* _unused,
|
|
PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
#ifdef USE_CUDA
|
|
TORCH_CHECK(PyTuple_GET_SIZE(args) == 2, "tuple of 2 items expected");
|
|
PyObject* _ref_counter = PyTuple_GET_ITEM(args, 0);
|
|
PyObject* _ref_counter_offset = PyTuple_GET_ITEM(args, 1);
|
|
if (!(PyBytes_Check(_ref_counter) &&
|
|
THPUtils_checkLong(_ref_counter_offset))) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"_release_ipc_counter in CUDA mode",
|
|
1,
|
|
"(bytes _ref_counter, int _ref_counter_offset)");
|
|
return nullptr;
|
|
}
|
|
std::string ref_counter_handle = PyBytes_AS_STRING(_ref_counter);
|
|
ptrdiff_t ref_counter_offset =
|
|
(ptrdiff_t)THPUtils_unpackLong(_ref_counter_offset);
|
|
// We don't want to break existing code, so resource deletion is best
|
|
// effort basis. Exception expected if producer process terminated
|
|
// before consumer released data.
|
|
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
|
|
try {
|
|
auto sptr = at::RefcountedMapAllocator::makeDataPtr(
|
|
ref_counter_handle.c_str(),
|
|
flags,
|
|
sizeof(int64_t) * torch::CUDA_IPC_REF_COUNTER_FILE_SIZE,
|
|
nullptr);
|
|
*(static_cast<int64_t*>(sptr.get()) + ref_counter_offset) -= 1;
|
|
} catch (c10::Error& err) {
|
|
// Already warned inside of producer process
|
|
}
|
|
Py_RETURN_NONE;
|
|
#else
|
|
TORCH_CHECK(false, "CUDA is not available");
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
#ifdef USE_CUDA
|
|
static std::string THPStorage_bytesAsHandleString(PyObject* handle) {
|
|
HANDLE_TH_ERRORS
|
|
char* buffer = nullptr;
|
|
Py_ssize_t handle_size = 0;
|
|
if (PyBytes_AsStringAndSize(handle, &buffer, &handle_size) == -1) {
|
|
TORCH_CHECK(handle_size == CUDA_IPC_HANDLE_SIZE, "incorrect handle");
|
|
}
|
|
TORCH_CHECK(handle_size == CUDA_IPC_HANDLE_SIZE, "incorrect handle size");
|
|
return std::string(buffer, handle_size);
|
|
END_HANDLE_TH_ERRORS_RET("")
|
|
}
|
|
#endif
|
|
|
|
static PyObject* THPStorage_newSharedCuda(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
#ifdef USE_CUDA
|
|
TORCH_CHECK(PyTuple_GET_SIZE(args) == 8, "tuple of 8 items expected");
|
|
PyObject* _device = PyTuple_GET_ITEM(args, 0);
|
|
PyObject* _handle = PyTuple_GET_ITEM(args, 1);
|
|
PyObject* _size_bytes = PyTuple_GET_ITEM(args, 2);
|
|
PyObject* _offset_bytes = PyTuple_GET_ITEM(args, 3);
|
|
PyObject* _ref_counter = PyTuple_GET_ITEM(args, 4);
|
|
PyObject* _ref_counter_offset = PyTuple_GET_ITEM(args, 5);
|
|
PyObject* _event_handle = PyTuple_GET_ITEM(args, 6);
|
|
PyObject* _event_sync_required = PyTuple_GET_ITEM(args, 7);
|
|
if (!(THPUtils_checkLong(_device) && THPUtils_checkLong(_size_bytes) &&
|
|
PyBytes_Check(_handle) && PyBytes_Check(_ref_counter) &&
|
|
PyBytes_Check(_event_handle) && THPUtils_checkLong(_offset_bytes) &&
|
|
THPUtils_checkLong(_ref_counter_offset) &&
|
|
PyBool_Check(_event_sync_required))) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"_new_shared in CUDA mode",
|
|
1,
|
|
"(int device, bytes handle, int storage_size_bytes, int storage_offset_bytes, bytes _ref_counter, int _ref_counter_offset, bytes event_handle, bool event_sync_required)");
|
|
return nullptr;
|
|
}
|
|
|
|
size_t storage_size =
|
|
(size_t)THPUtils_unpackLong(_size_bytes) / sizeof(uint8_t);
|
|
ptrdiff_t storage_offset_bytes =
|
|
(ptrdiff_t)THPUtils_unpackLong(_offset_bytes);
|
|
|
|
const auto device = c10::checked_convert<c10::DeviceIndex>(
|
|
THPUtils_unpackLong(_device), "c10::DeviceIndex");
|
|
at::cuda::CUDAGuard device_guard(device);
|
|
|
|
if (PyObject_IsTrue(_event_sync_required)) {
|
|
// Ensure that producer prepared all tensor's data
|
|
std::string s_ipc_event_handle =
|
|
THPStorage_bytesAsHandleString(_event_handle);
|
|
if (s_ipc_event_handle.empty()) {
|
|
return nullptr;
|
|
}
|
|
auto ipc_event_handle = reinterpret_cast<const cudaIpcEventHandle_t*>(
|
|
s_ipc_event_handle.c_str());
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cudaEvent_t event;
|
|
cudaIpcOpenEventHandle(&event, *ipc_event_handle);
|
|
C10_CUDA_CHECK(
|
|
cudaStreamWaitEvent(c10::cuda::getCurrentCUDAStream(device), event, 0));
|
|
}
|
|
|
|
std::string s_handle = THPStorage_bytesAsHandleString(_handle);
|
|
if (s_handle.empty()) {
|
|
return nullptr;
|
|
}
|
|
std::shared_ptr<void> basePtr =
|
|
c10::cuda::CUDACachingAllocator::getIpcDevPtr(s_handle);
|
|
|
|
// Offset the basePtr to reconstruct the real storage
|
|
// devPtr = basePtr + storage_offset
|
|
void* devPtr = basePtr.get();
|
|
devPtr = (char*)devPtr + storage_offset_bytes;
|
|
|
|
std::string ref_counter_handle = PyBytes_AS_STRING(_ref_counter);
|
|
ptrdiff_t ref_counter_offset =
|
|
(ptrdiff_t)THPUtils_unpackLong(_ref_counter_offset);
|
|
|
|
struct IpcDeleterContext {
|
|
std::string ref_counter_handle;
|
|
ptrdiff_t ref_counter_offset{};
|
|
c10::DeviceIndex device{-1};
|
|
torch::CudaIPCReceivedData received_data;
|
|
};
|
|
|
|
auto ctx = std::make_unique<IpcDeleterContext>();
|
|
ctx->ref_counter_handle = std::move(ref_counter_handle);
|
|
ctx->ref_counter_offset = ref_counter_offset;
|
|
ctx->device = device;
|
|
ctx->received_data.shared_ptr_ = std::move(basePtr);
|
|
|
|
auto cur_device = at::cuda::current_device();
|
|
c10::DataPtr data_ptr(
|
|
devPtr,
|
|
ctx.release(),
|
|
+[](void* ctx_) {
|
|
std::unique_ptr<IpcDeleterContext> ctx(
|
|
static_cast<IpcDeleterContext*>(ctx_));
|
|
ctx->received_data.shared_ptr_.reset();
|
|
|
|
// Sync default stream to make sure all operations related to the
|
|
// storage is finished (otherwise another process may reuse memory and
|
|
// corrupt data)
|
|
|
|
// Ideally all shared memory reference counting could be replaced by
|
|
// sending untriggered CUDA event from the producer to consumer and
|
|
// using this event as the criteria of memory release. However, CUDA
|
|
// (atm 10.1) does not support the creation of untriggered events and
|
|
// performance impact of having thousands of shared events is unknown.
|
|
|
|
// TODO: Instead of cudaStreamSynchronize it is possible to add Stream
|
|
// Callback and release counter inside of it (need to check performance
|
|
// impact)
|
|
at::cuda::stream_synchronize(
|
|
c10::cuda::getCurrentCUDAStream(ctx->device));
|
|
|
|
// We don't want to break existing code, so resource deletion is best
|
|
// effort basis. Exception expected if producer process terminated
|
|
// before consumer released data.
|
|
int flags =
|
|
at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
|
|
try {
|
|
auto sptr = at::RefcountedMapAllocator::makeDataPtr(
|
|
ctx->ref_counter_handle.c_str(),
|
|
flags,
|
|
sizeof(int64_t) * torch::CUDA_IPC_REF_COUNTER_FILE_SIZE,
|
|
nullptr);
|
|
*(static_cast<int64_t*>(sptr.get()) + ctx->ref_counter_offset) -= 1;
|
|
} catch (c10::Error& err) {
|
|
// Already warned inside of producer process
|
|
}
|
|
},
|
|
at::Device(at::DeviceType::CUDA, cur_device));
|
|
|
|
auto base = c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
storage_size,
|
|
std::move(data_ptr),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false);
|
|
|
|
base->set_resizable(false);
|
|
base->set_received_cuda(true);
|
|
|
|
return THPStorage_NewWithStorage(
|
|
THPStorageClass,
|
|
std::move(base),
|
|
c10::impl::PyInterpreterStatus::TAGGED_BY_US);
|
|
#else
|
|
TORCH_CHECK(false, "CUDA is not available");
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Returns an object that holds a "weak" pointer to the c10::StorageImpl. This
|
|
// pointer keeps the c10::StorageImpl struct live, but does not retain the data
|
|
// pointer.
|
|
//
|
|
// NB: This does NOT preserve object identity when you call it multiple times
|
|
static PyObject* THPStorage_weakRef(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
c10::StorageImpl* storage = THPStorage_Unpack(self).unsafeGetStorageImpl();
|
|
return PyLong_FromVoidPtr(c10::raw::intrusive_ptr::make_weak(storage));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_newWithWeakPtr(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "_new_with_weak_ptr(): arg must be an 'int'");
|
|
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
|
|
if (auto* storage = c10::raw::weak_intrusive_ptr::lock(weak_storage)) {
|
|
return THPStorage_Wrap(
|
|
c10::intrusive_ptr<c10::StorageImpl>::reclaim(storage));
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_freeWeakRef(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (arg == Py_None) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "_free_weak_ref(): arg must be an 'int'");
|
|
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
|
|
c10::raw::weak_intrusive_ptr::decref(weak_storage);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_expired(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "_expired(): arg must be an 'int'");
|
|
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
|
|
return PyBool_FromLong(
|
|
c10::raw::weak_intrusive_ptr::use_count(weak_storage) == 0);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_sharedFd(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
THPStorage_assertNotNull(self);
|
|
at::MapAllocator* ctx = nullptr;
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
if (storage.device_type() == at::kCPU) {
|
|
ctx = at::MapAllocator::fromDataPtr(storage.data_ptr());
|
|
}
|
|
|
|
TORCH_CHECK(ctx, "couldn't retrieve a shared file descriptor");
|
|
return THPUtils_packInt32(ctx->fd());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_isShared(PyObject* self, PyObject* noargs) {
|
|
const auto& storage = THPStorage_Unpack(self);
|
|
if (storage.device_type() == at::kCUDA) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
if (at::MapAllocator::fromDataPtr(storage.data_ptr()) ||
|
|
THManagedMapAllocator::fromDataPtr(storage.data_ptr())) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
|
|
static PyMethodDef THPStorage_sharingMethods[] = {
|
|
{"_new_with_weak_ptr",
|
|
THPStorage_newWithWeakPtr,
|
|
METH_O | METH_CLASS,
|
|
nullptr},
|
|
{"_share_cuda_", THPStorage_shareCuda, METH_NOARGS, nullptr},
|
|
{"_new_shared_cuda",
|
|
THPStorage_newSharedCuda,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_release_ipc_counter_cuda",
|
|
THPStorage_releaseIPCCounter,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_share_fd_cpu_", THPStorage_shareFd, METH_NOARGS, nullptr},
|
|
{"_new_shared_fd_cpu",
|
|
THPStorage_newSharedFd,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_new_using_fd_cpu",
|
|
THPStorage_pyNewFdStorage,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_share_filename_cpu_", THPStorage_shareFilename, METH_NOARGS, nullptr},
|
|
{"_new_shared_filename_cpu",
|
|
THPStorage_newSharedFilename,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_new_using_filename_cpu",
|
|
THPStorage_pyNewFilenameStorage,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_weak_ref", THPStorage_weakRef, METH_NOARGS, nullptr},
|
|
{"_free_weak_ref", THPStorage_freeWeakRef, METH_O | METH_STATIC, nullptr},
|
|
{"_expired", THPStorage_expired, METH_O | METH_STATIC, nullptr},
|
|
{"_shared_decref", THPStorage_sharedDecref, METH_NOARGS, nullptr},
|
|
{"_shared_incref", THPStorage_sharedIncref, METH_NOARGS, nullptr},
|
|
{"_get_shared_fd", THPStorage_sharedFd, METH_NOARGS, nullptr},
|
|
{"is_shared", THPStorage_isShared, METH_NOARGS, nullptr},
|
|
{nullptr}};
|
|
|
|
PyMethodDef* THPStorage_getSharingMethods() {
|
|
return THPStorage_sharingMethods;
|
|
}
|