Files
pytorch/caffe2/CMakeLists.txt
Elias Ellison 25d33a2ee8 [JIT] Use Type Level Granularity in Alias Analysis Wildcards (#32251)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32251

Previously wildcard sets were associated by TypeKind, meaning all Lists were in one alias set, all Classes were in one alias set, etc. We can improve analysis by bucketing wildcard sets by TypePtr instead. Any two mutable types which can unify should be in the same wildcard set bucket.

This also allows us do much simpler `mayContainAlias` analysis, and also improves `analyzeConservative` analysis because now we can recurse through all contained memory locations and mark writes, instead of just recursing only level deep in contained elements.

Test Plan: Imported from OSS

Differential Revision: D19563263

Pulled By: eellison

fbshipit-source-id: 371a37d1a8596abc6c53f41c09840b6c140ea362
2020-01-28 18:07:48 -08:00

1415 lines
58 KiB
CMake

# ---[ Generate and install header and cpp files
include(../cmake/Codegen.cmake)
# ---[ Declare source file lists
# ---[ ATen build
if (INTERN_BUILD_ATEN_OPS)
set(__caffe2_CMAKE_POSITION_INDEPENDENT_CODE ${CMAKE_POSITION_INDEPENDENT_CODE})
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_subdirectory(../aten aten)
set(CMAKE_POSITION_INDEPENDENT_CODE ${__caffe2_CMAKE_POSITION_INDEPENDENT_CODE})
# Generate the headers wrapped by our operator
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/contrib/aten/aten_op.h
COMMAND
"${PYTHON_EXECUTABLE}" ${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/gen_op.py
--aten_root=${CMAKE_CURRENT_SOURCE_DIR}/../aten
--template_dir=${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten
--yaml_dir=${CMAKE_CURRENT_BINARY_DIR}/../aten/src/ATen
--install_dir=${CMAKE_CURRENT_BINARY_DIR}/contrib/aten
DEPENDS
ATEN_CPU_FILES_GEN_TARGET
${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml
${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/gen_op.py
${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/aten_op_template.h)
add_custom_target(__aten_op_header_gen
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/contrib/aten/aten_op.h)
add_library(aten_op_header_gen INTERFACE)
add_dependencies(aten_op_header_gen __aten_op_header_gen)
# Add source, includes, and libs to lists
list(APPEND Caffe2_CPU_SRCS ${ATen_CPU_SRCS})
list(APPEND Caffe2_GPU_SRCS ${ATen_CUDA_SRCS})
list(APPEND Caffe2_HIP_SRCS ${ATen_HIP_SRCS})
list(APPEND Caffe2_CPU_TEST_SRCS ${ATen_CPU_TEST_SRCS})
list(APPEND Caffe2_GPU_TEST_SRCS ${ATen_CUDA_TEST_SRCS})
list(APPEND Caffe2_HIP_TEST_SRCS ${ATen_HIP_TEST_SRCS})
list(APPEND Caffe2_CPU_TEST_SRCS ${ATen_CORE_TEST_SRCS})
list(APPEND Caffe2_CPU_INCLUDE ${ATen_CPU_INCLUDE})
list(APPEND Caffe2_GPU_INCLUDE ${ATen_CUDA_INCLUDE})
list(APPEND Caffe2_HIP_INCLUDE ${ATen_HIP_INCLUDE})
list(APPEND Caffe2_DEPENDENCY_LIBS ${ATen_CPU_DEPENDENCY_LIBS})
list(APPEND Caffe2_CUDA_DEPENDENCY_LIBS ${ATen_CUDA_DEPENDENCY_LIBS})
list(APPEND Caffe2_HIP_DEPENDENCY_LIBS ${ATen_HIP_DEPENDENCY_LIBS})
list(APPEND Caffe2_DEPENDENCY_INCLUDE ${ATen_THIRD_PARTY_INCLUDE})
endif()
# ---[ Caffe2 build
# Note: the folders that are being commented out have not been properly
# addressed yet.
add_subdirectory(core)
add_subdirectory(serialize)
add_subdirectory(utils)
add_subdirectory(perfkernels)
# Skip modules that are not used by libtorch mobile yet.
if (NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE)
add_subdirectory(contrib)
add_subdirectory(predictor)
add_subdirectory(predictor/emulator)
add_subdirectory(core/nomnigraph)
if (USE_NVRTC)
add_subdirectory(cuda_rtc)
endif()
add_subdirectory(db)
add_subdirectory(distributed)
# add_subdirectory(experiments) # note, we may remove this folder at some point
add_subdirectory(ideep)
add_subdirectory(image)
add_subdirectory(video)
add_subdirectory(mobile)
add_subdirectory(mpi)
add_subdirectory(observers)
add_subdirectory(onnx)
if (BUILD_CAFFE2_OPS)
add_subdirectory(operators)
add_subdirectory(operators/rnn)
if (USE_FBGEMM)
add_subdirectory(quantization)
add_subdirectory(quantization/server)
endif()
if (USE_QNNPACK)
add_subdirectory(operators/quantized)
endif()
endif()
add_subdirectory(opt)
add_subdirectory(proto)
add_subdirectory(python)
add_subdirectory(queue)
add_subdirectory(sgd)
add_subdirectory(share)
# add_subdirectory(test) # todo: use caffe2_gtest_main instead of gtest_main because we will need to call GlobalInit
add_subdirectory(transforms)
endif()
# Advanced: if we have white list specified, we will do intersections for all
# main lib srcs.
if (CAFFE2_WHITELISTED_FILES)
caffe2_do_whitelist(Caffe2_CPU_SRCS CAFFE2_WHITELISTED_FILES)
caffe2_do_whitelist(Caffe2_GPU_SRCS CAFFE2_WHITELISTED_FILES)
caffe2_do_whitelist(Caffe2_HIP_SRCS CAFFE2_WHITELISTED_FILES)
endif()
# Debug messages - if you want to get a list of source files, enable the
# following.
if (FALSE)
message(STATUS "CPU sources: ")
foreach(tmp ${Caffe2_CPU_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU sources: ")
foreach(tmp ${Caffe2_GPU_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "CPU include: ")
foreach(tmp ${Caffe2_CPU_INCLUDE})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU include: ")
foreach(tmp ${Caffe2_GPU_INCLUDE})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "CPU test sources: ")
foreach(tmp ${Caffe2_CPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU test sources: ")
foreach(tmp ${Caffe2_GPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "HIP sources: ")
foreach(tmp ${Caffe2_HIP_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "HIP test sources: ")
foreach(tmp ${Caffe2_HIP_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen CPU test sources: ")
foreach(tmp ${ATen_CPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen CUDA test sources: ")
foreach(tmp ${ATen_CUDA_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen HIP test sources: ")
foreach(tmp ${ATen_HIP_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
endif()
if (NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE)
# ---[ List of libraries to link with
add_library(caffe2_protos STATIC $<TARGET_OBJECTS:Caffe2_PROTO>)
add_dependencies(caffe2_protos Caffe2_PROTO)
# If we are going to link protobuf locally inside caffe2 libraries, what we will do is
# to create a helper static library that always contains libprotobuf source files, and
# link the caffe2 related dependent libraries to it.
target_include_directories(caffe2_protos INTERFACE $<INSTALL_INTERFACE:include>)
# Reason for this public dependency is as follows:
# (1) Strictly speaking, we should not expose any Protobuf related functions. We should
# only use function interfaces wrapped with our own public API, and link protobuf
# locally.
# (2) However, currently across the Caffe2 codebase, we have extensive use of protobuf
# functionalities. For example, not only libcaffe2.so uses it, but also other
# binaries such as python extensions etc. As a result, we will have to have a
# transitive dependency to libprotobuf.
#
# Good thing is that, if we specify CAFFE2_LINK_LOCAL_PROTOBUF, then we do not need to
# separately deploy protobuf binaries - libcaffe2.so will contain all functionalities
# one needs. One can verify this via ldd.
#
# TODO item in the future includes:
# (1) Enable using lite protobuf
# (2) Properly define public API that do not directly depend on protobuf itself.
# (3) Expose the libprotobuf.a file for dependent libraries to link to.
#
# What it means for users/developers?
# (1) Users: nothing affecting the users, other than the fact that CAFFE2_LINK_LOCAL_PROTOBUF
# avoids the need to deploy protobuf.
# (2) Developers: if one simply uses core caffe2 functionality without using protobuf,
# nothing changes. If one has a dependent library that uses protobuf, then one needs to
# have the right protobuf version as well as linking to libprotobuf.a.
target_link_libraries(caffe2_protos PUBLIC protobuf::libprotobuf)
if (NOT BUILD_SHARED_LIBS)
INSTALL(TARGETS caffe2_protos ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}")
endif()
endif()
# ==========================================================
# formerly-libtorch
# ==========================================================
set(TORCH_SRC_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../torch")
set(TORCH_ROOT "${TORCH_SRC_DIR}/..")
if(NOT TORCH_INSTALL_BIN_DIR)
set(TORCH_INSTALL_BIN_DIR bin)
endif()
if(NOT TORCH_INSTALL_INCLUDE_DIR)
set(TORCH_INSTALL_INCLUDE_DIR include)
endif()
if(NOT TORCH_INSTALL_LIB_DIR)
set(TORCH_INSTALL_LIB_DIR lib)
endif()
if (NOT INTERN_BUILD_MOBILE OR NOT BUILD_CAFFE2_MOBILE)
set(CMAKE_POSITION_INDEPENDENT_CODE TRUE)
# Generate files
set(TOOLS_PATH "${TORCH_ROOT}/tools")
configure_file("${TORCH_ROOT}/aten/src/ATen/common_with_cwrap.py"
"${TOOLS_PATH}/shared/cwrap_common.py"
COPYONLY)
configure_file("${TORCH_SRC_DIR}/_utils_internal.py"
"${TOOLS_PATH}/shared/_utils_internal.py"
COPYONLY)
set(GENERATED_CXX_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/Functions.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/register_aten_ops_0.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/register_aten_ops_1.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/register_aten_ops_2.cpp"
)
if(NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND GENERATED_CXX_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_0.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_1.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_2.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_3.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_4.cpp"
)
endif()
set(GENERATED_H_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/Functions.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/variable_factories.h"
)
if(NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND GENERATED_H_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType.h"
)
endif()
set(GENERATED_CXX_PYTHON
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_variable_methods.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_torch_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_nn_functions.cpp"
)
set(GENERATED_H_PYTHON
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_functions.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_variable_methods_dispatch.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_torch_functions_dispatch.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_nn_functions.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_nn_functions_dispatch.h"
)
set(TORCH_GENERATED_CODE
${GENERATED_CXX_TORCH}
${GENERATED_H_TORCH}
${GENERATED_CXX_PYTHON}
${GENERATED_H_PYTHON}
)
add_custom_command(
OUTPUT
${TORCH_GENERATED_CODE}
COMMAND
"${PYTHON_EXECUTABLE}" tools/setup_helpers/generate_code.py
--declarations-path "${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml"
--nn-path "aten/src"
$<$<BOOL:${INTERN_DISABLE_AUTOGRAD}>:--disable-autograd>
$<$<BOOL:${SELECTED_OP_LIST}>:--selected-op-list-path="${SELECTED_OP_LIST}">
DEPENDS
"${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml"
"${CMAKE_CURRENT_LIST_DIR}/../aten/src/THNN/generic/THNN.h"
"${TOOLS_PATH}/autograd/templates/VariableType.h"
"${TOOLS_PATH}/autograd/templates/VariableType.cpp"
"${TOOLS_PATH}/autograd/templates/Functions.h"
"${TOOLS_PATH}/autograd/templates/Functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_functions.h"
"${TOOLS_PATH}/autograd/templates/python_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_variable_methods.cpp"
"${TOOLS_PATH}/autograd/templates/python_variable_methods_dispatch.h"
"${TOOLS_PATH}/autograd/templates/python_torch_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_torch_functions_dispatch.h"
"${TOOLS_PATH}/autograd/templates/python_nn_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_nn_functions.h"
"${TOOLS_PATH}/autograd/templates/python_nn_functions_dispatch.h"
"${TOOLS_PATH}/autograd/templates/variable_factories.h"
"${TOOLS_PATH}/autograd/deprecated.yaml"
"${TOOLS_PATH}/autograd/derivatives.yaml"
"${TOOLS_PATH}/autograd/gen_autograd_functions.py"
"${TOOLS_PATH}/autograd/gen_autograd.py"
"${TOOLS_PATH}/autograd/gen_python_functions.py"
"${TOOLS_PATH}/autograd/gen_variable_factories.py"
"${TOOLS_PATH}/autograd/gen_variable_type.py"
"${TOOLS_PATH}/autograd/load_derivatives.py"
"${TOOLS_PATH}/autograd/nested_dict.py"
"${TOOLS_PATH}/autograd/utils.py"
"${TOOLS_PATH}/jit/gen_jit_dispatch.py"
"${TOOLS_PATH}/jit/templates/register_aten_ops.cpp"
WORKING_DIRECTORY "${TORCH_ROOT}")
# Required workaround for libtorch_python.so build
# see https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/#custom-commands-in-different-directories
add_custom_target(
generate-torch-sources
DEPENDS ${TORCH_GENERATED_CODE}
)
set(TORCH_SRCS
${GENERATED_CXX_TORCH}
${GENERATED_H_TORCH}
${TORCH_SRC_DIR}/csrc/autograd/anomaly_mode.cpp
${TORCH_SRC_DIR}/csrc/autograd/autograd.cpp
${TORCH_SRC_DIR}/csrc/autograd/custom_function.cpp
${TORCH_SRC_DIR}/csrc/autograd/cpp_hook.cpp
${TORCH_SRC_DIR}/csrc/autograd/engine.cpp
${TORCH_SRC_DIR}/csrc/autograd/function.cpp
${TORCH_SRC_DIR}/csrc/autograd/function_hook.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/accumulate_grad.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/basic_ops.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/tensor.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/utils.cpp
${TORCH_SRC_DIR}/csrc/autograd/input_buffer.cpp
${TORCH_SRC_DIR}/csrc/autograd/profiler.cpp
${TORCH_SRC_DIR}/csrc/autograd/record_function.cpp
${TORCH_SRC_DIR}/csrc/autograd/record_function_ops.cpp
${TORCH_SRC_DIR}/csrc/autograd/saved_variable.cpp
${TORCH_SRC_DIR}/csrc/autograd/variable.cpp
${TORCH_SRC_DIR}/csrc/jit/autodiff.cpp
${TORCH_SRC_DIR}/csrc/jit/attributes.cpp
${TORCH_SRC_DIR}/csrc/jit/argument_spec.cpp
${TORCH_SRC_DIR}/csrc/jit/custom_class.cpp
${TORCH_SRC_DIR}/csrc/jit/pass_manager.cpp
${TORCH_SRC_DIR}/csrc/jit/pickler.cpp
${TORCH_SRC_DIR}/csrc/jit/unpickler.cpp
${TORCH_SRC_DIR}/csrc/jit/graph_executor.cpp
${TORCH_SRC_DIR}/csrc/jit/import_source.cpp
${TORCH_SRC_DIR}/csrc/jit/import.cpp
${TORCH_SRC_DIR}/csrc/jit/pickle.cpp
${TORCH_SRC_DIR}/csrc/jit/import_export_helpers.cpp
${TORCH_SRC_DIR}/csrc/jit/instruction.cpp
${TORCH_SRC_DIR}/csrc/jit/interpreter.cpp
${TORCH_SRC_DIR}/csrc/jit/constants.cpp
${TORCH_SRC_DIR}/csrc/jit/node_hashing.cpp
${TORCH_SRC_DIR}/csrc/jit/type_hashing.cpp
${TORCH_SRC_DIR}/csrc/jit/ir.cpp
${TORCH_SRC_DIR}/csrc/jit/irparser.cpp
${TORCH_SRC_DIR}/csrc/jit/jit_log.cpp
${TORCH_SRC_DIR}/csrc/jit/operator.cpp
${TORCH_SRC_DIR}/csrc/jit/register_c10_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/subgraph_matcher.cpp
${TORCH_SRC_DIR}/csrc/jit/symbolic_script.cpp
${TORCH_SRC_DIR}/csrc/jit/profiling_record.cpp
${TORCH_SRC_DIR}/csrc/jit/profiling_graph_executor_impl.cpp
${TORCH_SRC_DIR}/csrc/jit/update_graph_executor_opt.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/alias_analysis.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/batch_mm.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/bailout_graph.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/canonicalize.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/clear_undefinedness.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/constant_propagation.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/constant_pooling.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/common_subexpression_elimination.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/create_autodiff_subgraphs.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/inline_autodiff_subgraphs.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/insert_guards.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/inliner.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/lift_closures.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/inline_forked_closures.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/dead_code_elimination.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/decompose_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/canonicalize_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/erase_number_types.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/fixup_trace_scope_blocks.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/inline_fork_wait.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/graph_fuser.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/guard_elimination.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/inplace_check.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/liveness.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/loop_unrolling.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/lower_grad_of.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/lower_graph.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/lower_tuples.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/peephole.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/remove_expands.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/remove_inplace_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/shape_analysis.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/requires_grad_analysis.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/specialize_autogradzero.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/subgraph_rewrite.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/python_print.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/utils/subgraph_utils.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/utils/check_alias_annotation.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/utils/memory_dag.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/quantization.cpp
${TORCH_SRC_DIR}/csrc/jit/passes/fuse_linear.cpp
${TORCH_SRC_DIR}/csrc/jit/print_handler.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/interface.cpp
${TORCH_SRC_DIR}/csrc/jit/register_prim_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/register_prim_ops_c10.cpp
${TORCH_SRC_DIR}/csrc/jit/register_string_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/register_special_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/scope.cpp
${TORCH_SRC_DIR}/csrc/jit/script/compiler.cpp
${TORCH_SRC_DIR}/csrc/jit/testing/file_check.cpp
${TORCH_SRC_DIR}/csrc/jit/script/convert_to_ssa.cpp
${TORCH_SRC_DIR}/csrc/jit/script/exit_transforms.cpp
${TORCH_SRC_DIR}/csrc/jit/script/inline_loop_condition.cpp
${TORCH_SRC_DIR}/csrc/jit/script/schema_matching.cpp
${TORCH_SRC_DIR}/csrc/jit/script/script_type_parser.cpp
${TORCH_SRC_DIR}/csrc/jit/script/sugared_value.cpp
${TORCH_SRC_DIR}/csrc/jit/script/class_type.cpp
${TORCH_SRC_DIR}/csrc/jit/script/parser.cpp
${TORCH_SRC_DIR}/csrc/jit/script/builtin_functions.cpp
${TORCH_SRC_DIR}/csrc/jit/script/canonicalize_modified_loop.cpp
${TORCH_SRC_DIR}/csrc/jit/script/edit_distance.cpp
${TORCH_SRC_DIR}/csrc/jit/script/logging.cpp
${TORCH_SRC_DIR}/csrc/jit/script/module.cpp
${TORCH_SRC_DIR}/csrc/jit/script/object.cpp
${TORCH_SRC_DIR}/csrc/jit/script/jit_exception.cpp
${TORCH_SRC_DIR}/csrc/jit/script/string_to_type.cpp
${TORCH_SRC_DIR}/csrc/jit/source_range_serialization.cpp
${TORCH_SRC_DIR}/csrc/jit/tracer.cpp
${TORCH_SRC_DIR}/csrc/jit/hooks_for_testing.cpp
${TORCH_SRC_DIR}/csrc/utils/tensor_flatten.cpp
${TORCH_SRC_DIR}/csrc/utils/variadic.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/kernel_cache.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/compiler.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/executor.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/codegen.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/fallback.cpp
${TORCH_SRC_DIR}/csrc/jit/function.cpp
${TORCH_SRC_DIR}/csrc/jit/vararg_functions.cpp
)
if (NOT INTERN_DISABLE_MOBILE_INTERP)
set (MOBILE_SRCS
${TORCH_SRC_DIR}/csrc/jit/mobile/function.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/import.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/module.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/register_mobile_ops.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/interpreter.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/type_parser.cpp
)
list (APPEND TORCH_SRCS ${MOBILE_SRCS})
endif()
if (NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/autograd/VariableTypeManual.cpp
)
endif()
if (NOT INTERN_BUILD_MOBILE)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/api/src/jit.cpp
${TORCH_SRC_DIR}/csrc/jit/export.cpp
${TORCH_SRC_DIR}/csrc/jit/export_module.cpp
${TORCH_SRC_DIR}/csrc/jit/import_legacy.cpp
${TORCH_SRC_DIR}/csrc/jit/netdef_converter.cpp
${TORCH_SRC_DIR}/csrc/jit/fuser/cpu/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/jit/script/module_save.cpp
${TORCH_SRC_DIR}/csrc/utils/byte_order.cpp
)
if (USE_DISTRIBUTED)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/distributed/autograd/context/container.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/context/context.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/engine/dist_engine.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/functions/recvrpc_backward.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/functions/sendrpc_backward.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/autograd_metadata.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.cpp
${TORCH_SRC_DIR}/csrc/distributed/autograd/utils.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/message.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/python_call.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/python_remote_call.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/python_resp.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/rpc_agent.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/request_callback.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/rref_proto.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/script_call.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/script_remote_call.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/script_resp.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/types.cpp
${TORCH_SRC_DIR}/csrc/distributed/rpc/utils.cpp
${TORCH_SRC_DIR}/csrc/jit/register_distributed_ops.cpp
)
endif()
endif()
if (USE_CUDA)
list(APPEND Caffe2_GPU_SRCS
${TORCH_SRC_DIR}/csrc/jit/fuser/cuda/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/autograd/profiler_cuda.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/comm.cpp
${TORCH_SRC_DIR}/csrc/cuda/comm.cpp
)
add_library(caffe2_nvrtc SHARED ${ATen_NVRTC_STUB_SRCS})
target_link_libraries(caffe2_nvrtc ${CUDA_NVRTC} ${CUDA_CUDA_LIB} ${CUDA_NVRTC_LIB})
target_include_directories(caffe2_nvrtc PRIVATE ${CUDA_INCLUDE_DIRS})
install(TARGETS caffe2_nvrtc DESTINATION "${TORCH_INSTALL_LIB_DIR}")
if (USE_NCCL)
list(APPEND Caffe2_GPU_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
endif()
if (USE_ROCM)
list(APPEND Caffe2_HIP_SRCS
${TORCH_SRC_DIR}/csrc/jit/fuser/cuda/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/autograd/profiler_cuda.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/comm.cpp
${TORCH_SRC_DIR}/csrc/cuda/comm.cpp
)
if (USE_NCCL)
list(APPEND Caffe2_HIP_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
# caffe2_nvrtc's stubs to driver APIs are useful for HIP.
# See NOTE [ ATen NVRTC Stub and HIP ]
add_library(caffe2_nvrtc SHARED ${ATen_NVRTC_STUB_SRCS})
target_link_libraries(caffe2_nvrtc ${PYTORCH_HIP_HCC_LIBRARIES} ${ROCM_HIPRTC_LIB})
target_compile_definitions(caffe2_nvrtc PRIVATE USE_ROCM __HIP_PLATFORM_HCC__)
install(TARGETS caffe2_nvrtc DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
if (NOT NO_API)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/api/src/cuda.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/datasets/mnist.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/distributed.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/random.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/sequential.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/stream.cpp
${TORCH_SRC_DIR}/csrc/api/src/enum.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize.cpp
${TORCH_SRC_DIR}/csrc/api/src/jit.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/init.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/module.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/_functions.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/activation.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/batchnorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/normalization.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/instancenorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/conv.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/dropout.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/distance.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/embedding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/fold.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/linear.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/loss.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/padding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/pixelshuffle.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/pooling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/rnn.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/upsampling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/container/functional.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/container/named_any.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/activation.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/batchnorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/embedding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/instancenorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/normalization.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/conv.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/dropout.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/linear.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/padding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/pooling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/rnn.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/vision.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/adagrad.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/adam.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/lbfgs.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/optimizer.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/rmsprop.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/serialize.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/sgd.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize/input-archive.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize/output-archive.cpp
)
endif()
list(APPEND Caffe2_CPU_SRCS ${TORCH_SRCS})
endif()
# ==========================================================
# END formerly-libtorch sources
# ==========================================================
add_library(torch_cpu ${Caffe2_CPU_SRCS})
torch_compile_options(torch_cpu) # see cmake/public/utils.cmake
# This is required for older versions of CMake, which don't allow
# specifying add_library() without a list of source files
set(DUMMY_EMPTY_FILE ${CMAKE_BINARY_DIR}/empty.cpp)
if (MSVC)
set(DUMMY_FILE_CONTENT "__declspec(dllexport) int ignore_this_library_placeholder(){return 0\\;}")
else()
set(DUMMY_FILE_CONTENT "")
endif()
file(WRITE ${DUMMY_EMPTY_FILE} ${DUMMY_FILE_CONTENT})
# Wrapper library for people who link against torch and expect both CPU and CUDA support
# Contains "torch_cpu" and "torch_cuda"
add_library(torch ${DUMMY_EMPTY_FILE})
if(USE_ROCM)
filter_list(__caffe2_hip_srcs_cpp Caffe2_HIP_SRCS "\\.(cu|hip)$")
set_source_files_properties(${__caffe2_hip_srcs_cpp} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
endif()
# Compile exposed libraries.
IF (USE_ROCM)
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
hip_add_library(torch_hip ${Caffe2_HIP_SRCS})
set(CUDA_LINK_LIBRARIES_KEYWORD)
torch_compile_options(torch_hip) # see cmake/public/utils.cmake
# TODO: Not totally sure if this is live or not
if (USE_NCCL)
target_link_libraries(torch_hip PRIVATE __caffe2_nccl)
target_compile_definitions(torch_hip PRIVATE USE_NCCL)
endif()
ELSEIF(USE_CUDA)
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
cuda_add_library(torch_cuda ${Caffe2_GPU_SRCS})
set(CUDA_LINK_LIBRARIES_KEYWORD)
torch_compile_options(torch_cuda) # see cmake/public/utils.cmake
if (USE_NCCL)
target_link_libraries(torch_cuda PRIVATE __caffe2_nccl)
target_compile_definitions(torch_cuda PRIVATE USE_NCCL)
endif()
ENDIF()
# ==========================================================
# formerly-libtorch flags
# ==========================================================
if (NOT INTERN_BUILD_MOBILE)
# Forces caffe2.pb.h to be generated before its dependents are compiled.
# Adding the generated header file to the ${TORCH_SRCS} list is not sufficient
# to establish the dependency, since the generation procedure is declared in a different CMake file.
# See https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/#custom-commands-in-different-directories
add_dependencies(torch_cpu Caffe2_PROTO)
endif()
if (NOT INTERN_BUILD_MOBILE OR NOT BUILD_CAFFE2_MOBILE)
if (NOT NO_API)
target_include_directories(torch_cpu PRIVATE
${TORCH_SRC_DIR}/csrc/api
${TORCH_SRC_DIR}/csrc/api/include)
endif()
if(USE_CUDA)
if(MSVC)
if (NOT NVTOOLEXT_HOME)
set(NVTOOLEXT_HOME "C:/Program Files/NVIDIA Corporation/NvToolsExt")
endif()
if (DEFINED ENV{NVTOOLSEXT_PATH})
set(NVTOOLEXT_HOME $ENV{NVTOOLSEXT_PATH})
file(TO_CMAKE_PATH ${NVTOOLEXT_HOME} NVTOOLEXT_HOME)
endif()
set(TORCH_CUDA_LIBRARIES
${NVTOOLEXT_HOME}/lib/x64/nvToolsExt64_1.lib
${CUDA_LIBRARIES})
target_include_directories(torch_cuda PUBLIC "${NVTOOLEXT_HOME}/include")
elseif(APPLE)
set(TORCH_CUDA_LIBRARIES
${CUDA_TOOLKIT_ROOT_DIR}/lib/libcudart.dylib
${CUDA_TOOLKIT_ROOT_DIR}/lib/libnvrtc.dylib
${CUDA_TOOLKIT_ROOT_DIR}/lib/libnvToolsExt.dylib
${CUDA_LIBRARIES})
else()
find_library(LIBNVTOOLSEXT libnvToolsExt.so PATHS ${CUDA_TOOLKIT_ROOT_DIR}/lib64/)
set(TORCH_CUDA_LIBRARIES
${LIBNVTOOLSEXT}
${CUDA_LIBRARIES})
endif()
endif()
set(TH_CPU_INCLUDE
# dense
aten/src/TH
${CMAKE_CURRENT_BINARY_DIR}/aten/src/TH
${TORCH_ROOT}/aten/src
${CMAKE_CURRENT_BINARY_DIR}/aten/src
${CMAKE_BINARY_DIR}/aten/src)
target_include_directories(torch_cpu PRIVATE ${TH_CPU_INCLUDE})
set(ATen_CPU_INCLUDE
${TORCH_ROOT}/aten/src
${CMAKE_CURRENT_BINARY_DIR}/../aten/src
${CMAKE_CURRENT_BINARY_DIR}/../aten/src/ATen
${CMAKE_BINARY_DIR}/aten/src)
IF (USE_TBB)
list(APPEND ATen_CPU_INCLUDE ${TBB_ROOT_DIR}/include)
target_link_libraries(torch_cpu PUBLIC tbb)
ENDIF()
target_include_directories(torch_cpu PRIVATE ${ATen_CPU_INCLUDE})
target_include_directories(torch_cpu PRIVATE
${TORCH_SRC_DIR}/csrc)
target_include_directories(torch_cpu PRIVATE
${TORCH_ROOT}/third_party/miniz-2.0.8)
install(DIRECTORY "${TORCH_SRC_DIR}/csrc"
DESTINATION ${TORCH_INSTALL_INCLUDE_DIR}/torch
FILES_MATCHING PATTERN "*.h")
install(FILES "${TORCH_SRC_DIR}/script.h" "${TORCH_SRC_DIR}/extension.h" "${TORCH_SRC_DIR}/custom_class.h" "${TORCH_SRC_DIR}/custom_class_detail.h"
DESTINATION ${TORCH_INSTALL_INCLUDE_DIR}/torch)
if (BUILD_TEST AND NOT MSVC AND NOT USE_ROCM)
add_subdirectory(${TORCH_ROOT}/test/cpp/jit ${CMAKE_BINARY_DIR}/test_jit)
if (USE_DISTRIBUTED)
add_subdirectory(${TORCH_ROOT}/test/cpp/rpc ${CMAKE_BINARY_DIR}/test_cpp_rpc)
endif()
endif()
if (BUILD_TEST AND NOT NO_API)
add_subdirectory(${TORCH_ROOT}/test/cpp/api ${CMAKE_BINARY_DIR}/test_api)
add_subdirectory(${TORCH_ROOT}/test/cpp/dist_autograd ${CMAKE_BINARY_DIR}/dist_autograd)
endif()
# XXX This ABI check cannot be run with arm-linux-androideabi-g++
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
if (DEFINED GLIBCXX_USE_CXX11_ABI)
message(STATUS "_GLIBCXX_USE_CXX11_ABI is already defined as a cmake variable")
else()
message(STATUS "${CMAKE_CXX_COMPILER} ${TORCH_SRC_DIR}/abi-check.cpp -o ${CMAKE_BINARY_DIR}/abi-check")
execute_process(
COMMAND
"${CMAKE_CXX_COMPILER}"
"${TORCH_SRC_DIR}/abi-check.cpp"
"-o"
"${CMAKE_BINARY_DIR}/abi-check"
RESULT_VARIABLE ABI_CHECK_COMPILE_RESULT)
if (ABI_CHECK_COMPILE_RESULT)
message(FATAL_ERROR "Could not compile ABI Check: ${ABI_CHECK_COMPILE_RESULT}")
endif()
execute_process(
COMMAND "${CMAKE_BINARY_DIR}/abi-check"
RESULT_VARIABLE ABI_CHECK_RESULT
OUTPUT_VARIABLE GLIBCXX_USE_CXX11_ABI)
if (ABI_CHECK_RESULT)
message(WARNING "Could not run ABI Check: ${ABI_CHECK_RESULT}")
endif()
endif()
message(STATUS "Determined _GLIBCXX_USE_CXX11_ABI=${GLIBCXX_USE_CXX11_ABI}")
endif()
# CMake config for external projects.
configure_file(
${PROJECT_SOURCE_DIR}/cmake/TorchConfigVersion.cmake.in
${PROJECT_BINARY_DIR}/TorchConfigVersion.cmake
@ONLY)
configure_file(
${TORCH_ROOT}/cmake/TorchConfig.cmake.in
${PROJECT_BINARY_DIR}/TorchConfig.cmake
@ONLY)
install(FILES
${PROJECT_BINARY_DIR}/TorchConfigVersion.cmake
${PROJECT_BINARY_DIR}/TorchConfig.cmake
DESTINATION share/cmake/Torch)
if (USE_DISTRIBUTED)
if (NOT MSVC)
add_subdirectory(${TORCH_SRC_DIR}/lib/c10d lib_c10d)
endif()
endif()
# ---[ Torch python bindings build
add_subdirectory(../torch torch)
endif()
# ==========================================================
# END formerly-libtorch flags
# ==========================================================
if (NOT NO_API)
target_include_directories(torch_cpu PUBLIC
$<BUILD_INTERFACE:${TORCH_SRC_DIR}/csrc/api>
$<BUILD_INTERFACE:${TORCH_SRC_DIR}/csrc/api/include>)
endif()
if(USE_OPENMP)
find_package(OpenMP QUIET)
endif()
if(USE_OPENMP AND OPENMP_FOUND)
message(STATUS "pytorch is compiling with OpenMP. \n"
"OpenMP CXX_FLAGS: ${OpenMP_CXX_FLAGS}. \n"
"OpenMP libraries: ${OpenMP_CXX_LIBRARIES}.")
target_compile_options(torch_cpu INTERFACE ${OpenMP_CXX_FLAGS})
target_link_libraries(torch_cpu PRIVATE ${OpenMP_CXX_LIBRARIES})
endif()
if(USE_ROCM)
target_compile_definitions(torch_hip PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
# NB: Massive hack. torch/csrc/jit/fuser/codegen.cpp includes
# torch/csrc/jit/fuser/cuda/resource_strings.h which changes the
# strings depending on if you're __HIP_PLATFORM_HCC__ or not.
# But that file is in torch_cpu! So, against all odds, this macro
# has to be set on torch_cpu too. I also added it to torch for
# better luck
target_compile_definitions(torch_cpu PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
target_compile_definitions(torch PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
target_include_directories(torch_hip PRIVATE
/opt/rocm/include
/opt/rocm/hcc/include
/opt/rocm/rocblas/include
/opt/rocm/hipsparse/include
)
endif()
if (NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE)
caffe2_interface_library(caffe2_protos caffe2_protos_whole)
target_link_libraries(torch_cpu PRIVATE caffe2_protos_whole)
if (${CAFFE2_LINK_LOCAL_PROTOBUF})
target_link_libraries(torch_cpu INTERFACE protobuf::libprotobuf)
else()
target_link_libraries(torch_cpu PUBLIC protobuf::libprotobuf)
endif()
endif()
if (USE_OPENMP AND OPENMP_FOUND)
message(STATUS "Caffe2 is compiling with OpenMP. \n"
"OpenMP CXX_FLAGS: ${OpenMP_CXX_FLAGS}. \n"
"OpenMP libraries: ${OpenMP_CXX_LIBRARIES}.")
target_link_libraries(torch_cpu PRIVATE ${OpenMP_CXX_LIBRARIES})
endif()
target_link_libraries(torch_cpu PUBLIC c10)
target_link_libraries(torch_cpu PUBLIC ${Caffe2_PUBLIC_DEPENDENCY_LIBS})
target_link_libraries(torch_cpu PRIVATE ${Caffe2_DEPENDENCY_LIBS})
target_link_libraries(torch_cpu PRIVATE ${Caffe2_DEPENDENCY_WHOLE_LINK_LIBS})
target_include_directories(torch_cpu INTERFACE $<INSTALL_INTERFACE:include>)
target_include_directories(torch_cpu PRIVATE ${Caffe2_CPU_INCLUDE})
target_include_directories(torch_cpu SYSTEM PRIVATE "${Caffe2_DEPENDENCY_INCLUDE}")
# Set standard properties on the target
torch_set_target_props(torch_cpu)
target_compile_options(torch_cpu PRIVATE "-DCAFFE2_BUILD_MAIN_LIB")
if(USE_CUDA)
target_compile_options(torch_cuda PRIVATE "-DTORCH_CUDA_BUILD_MAIN_LIB")
# NB: This must be target_compile_definitions, not target_compile_options,
# as the latter is not respected by nvcc
target_compile_definitions(torch_cuda PRIVATE "-DTORCH_CUDA_BUILD_MAIN_LIB")
elseif(USE_ROCM)
target_compile_options(torch_hip PRIVATE "-DTORCH_HIP_BUILD_MAIN_LIB")
target_compile_definitions(torch_hip PRIVATE "-DTORCH_HIP_BUILD_MAIN_LIB")
endif()
# ATen parallelism settings
# OMP - OpenMP for intra-op, native thread pool for inter-op parallelism
# NATIVE - using native thread pool for intra- and inter-op parallelism
# TBB - using TBB for intra- and native thread pool for inter-op parallelism
if (INTERN_BUILD_MOBILE AND NOT BUILD_CAFFE2_MOBILE)
set(ATEN_THREADING "NATIVE" CACHE STRING "ATen parallel backend")
else()
set(ATEN_THREADING "OMP" CACHE STRING "ATen parallel backend")
endif()
message(STATUS "Using ATen parallel backend: ${ATEN_THREADING}")
if ("${ATEN_THREADING}" STREQUAL "OMP")
target_compile_definitions(torch_cpu PUBLIC "-DAT_PARALLEL_OPENMP=1")
elseif ("${ATEN_THREADING}" STREQUAL "NATIVE")
target_compile_definitions(torch_cpu PUBLIC "-DAT_PARALLEL_NATIVE=1")
elseif ("${ATEN_THREADING}" STREQUAL "TBB")
if (NOT USE_TBB)
message(FATAL_ERROR "Using TBB backend but USE_TBB is off")
endif()
target_compile_definitions(torch_cpu PUBLIC "-DAT_PARALLEL_NATIVE_TBB=1")
else()
message(FATAL_ERROR "Unknown ATen parallel backend: ${ATEN_THREADING}")
endif()
set(EXPERIMENTAL_SINGLE_THREAD_POOL "0" CACHE STRING
"Experimental option to use a single thread pool for inter- and intra-op parallelism")
if ("${EXPERIMENTAL_SINGLE_THREAD_POOL}")
target_compile_definitions(torch_cpu PUBLIC "-DAT_EXPERIMENTAL_SINGLE_THREAD_POOL=1")
endif()
if (MSVC AND NOT BUILD_SHARED_LIBS)
# Note [Supporting both static and dynamic libraries on Windows]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# A Windows library may be distributed as either a static or dynamic
# library. The chosen distribution mechanism affects how you setup
# the headers for the library: if you statically link a function,
# all you need is an ordinary signature:
#
# void f();
#
# But if you *dynamically* link it, then you must provide a __declspec
# specifying that it should be imported from a DLL:
#
# __declspec(dllimport) void f();
#
# Mixing the two situations will not work: if you specify dllimport
# while statically linking, the linker will complain it cannot find
# the __imp_f symbol (which serve as the DLL entrypoint); if you
# fail to specify dllimport for a symbol that's coming from a DLL,
# the linker will complain that it can't find f. Joy!
#
# Most places on the Internet, you will find people have written
# their headers under the assumption that the application will
# only ever be dynamically linked, as they define a macro which
# tags a function as __declspec(dllexport) if you are actually
# building the library, and __declspec(dllimport) otherwise. But
# if you want these headers to also work if you are linking against
# a static library, you need a way to avoid adding these __declspec's
# at all. And that "mechanism" needs to apply to any downstream
# libraries/executables which are going to link against your library.
#
# As an aside, why do we need to support both modes?
# For historical reasons, PyTorch ATen on Windows is built dynamically,
# while Caffe2 on Windows is built statically (mostly because if
# we build it dynamically, we are over the DLL exported symbol limit--and
# that is because Caffe2 hasn't comprehensively annotated all symbols
# which cross the DLL boundary with CAFFE_API). So any code
# which is used by both PyTorch and Caffe2 needs to support both
# modes of linking.
#
# So, you have a macro (call it AT_CORE_STATIC_WINDOWS) which you need to have
# set for any downstream library/executable that transitively includes your
# headers. How are you going to do this? You have two options:
#
# 1. Write out a config.h header which stores whether or not
# you are linking statically or dynamically.
#
# 2. Force all of users to set the the macro themselves. If they
# use cmake, you can set -DAT_CORE_STATIC_WINDOWS=1 as a PUBLIC
# compile option, in which case cmake will automatically
# add the macro for you.
#
# Which one is better? Well, it depends: they trade off implementor
# ease versus user ease: (1) is more work for the library author
# but the user doesn't have to worry about it; (2) requires the user
# to set the macro themselves... but only if they don't use cmake.
#
# So, which is appropriate in our situation? In my mind, here is
# the distinguishing factor: it is more common to distribute
# DLLs, since they don't require you to line up the CRT version
# (/MD, /MDd, /MT, /MTd) and MSVC version at the use site. So,
# if a user is already in the business of static linkage, they're
# already in "expert user" realm. So, I've decided that at this
# point in time, the simplicity of implementation of (2) wins out.
#
# NB: This must be target_compile_definitions, not target_compile_options,
# as the latter is not respected by nvcc
target_compile_definitions(torch_cpu PUBLIC "AT_CORE_STATIC_WINDOWS=1")
endif()
if (MSVC AND BUILD_SHARED_LIBS)
# ONNX is linked statically and needs to be exported from this library
# to be used externally. Make sure that references match the export.
target_compile_options(torch_cpu PRIVATE "-DONNX_BUILD_MAIN_LIB")
endif()
caffe2_interface_library(torch_cpu torch_cpu_library)
if (USE_CUDA)
caffe2_interface_library(torch_cuda torch_cuda_library)
elseif (USE_ROCM)
caffe2_interface_library(torch_hip torch_hip_library)
endif()
caffe2_interface_library(torch torch_library)
install(TARGETS torch_cpu torch_cpu_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
if (USE_CUDA)
install(TARGETS torch_cuda torch_cuda_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
elseif (USE_ROCM)
install(TARGETS torch_hip torch_hip_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
install(TARGETS torch torch_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
target_link_libraries(torch PUBLIC torch_cpu_library)
if(USE_CUDA)
target_link_libraries(torch PUBLIC torch_cuda_library)
elseif(USE_ROCM)
target_link_libraries(torch PUBLIC torch_hip_library)
endif()
list(APPEND Caffe2_MAIN_LIBS torch_library)
if (USE_TBB)
list(APPEND Caffe2_MAIN_LIBS tbb)
endif()
# Install PDB files for MSVC builds
if (MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:torch_cpu> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
if(USE_CUDA)
install(FILES $<TARGET_PDB_FILE:torch_cuda> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
elseif(USE_ROCM)
install(FILES $<TARGET_PDB_FILE:torch_hip> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
endif()
endif()
# ---[ CUDA library.
if(USE_CUDA)
target_link_libraries(torch_cuda INTERFACE torch::cudart)
target_link_libraries(torch_cuda PUBLIC c10_cuda)
target_link_libraries(torch_cuda PUBLIC ${TORCH_CUDA_LIBRARIES})
target_include_directories(
torch_cuda INTERFACE $<INSTALL_INTERFACE:include>)
target_include_directories(
torch_cuda PRIVATE ${Caffe2_GPU_INCLUDE})
target_link_libraries(
torch_cuda PRIVATE ${Caffe2_CUDA_DEPENDENCY_LIBS})
# These public dependencies must go after the previous dependencies, as the
# order of the libraries in the linker call matters here when statically
# linking; libculibos and cublas must be last.
target_link_libraries(torch_cuda PUBLIC torch_cpu_library ${Caffe2_PUBLIC_CUDA_DEPENDENCY_LIBS})
endif()
# Note [Global dependencies]
# Some libraries (e.g. OpenMPI) like to dlopen plugins after they're initialized,
# and they assume that all of their symbols will be available in the global namespace.
# On the other hand we try to be good citizens and avoid polluting the symbol
# namespaces, so libtorch is loaded with all its dependencies in a local scope.
# That usually leads to missing symbol errors at run-time, so to avoid a situation like
# this we have to preload those libs in a global namespace.
if (BUILD_SHARED_LIBS)
add_library(torch_global_deps SHARED ${TORCH_SRC_DIR}/csrc/empty.c)
set_target_properties(torch_global_deps PROPERTIES LINKER_LANGUAGE C)
if (USE_MPI)
target_link_libraries(torch_global_deps ${MPI_CXX_LIBRARIES})
endif()
target_link_libraries(torch_global_deps ${MKL_LIBRARIES})
# The CUDA libraries are linked here for a different reason: in some
# cases we load these libraries with ctypes, and if they weren't opened
# with RTLD_GLOBAL, we'll do the "normal" search process again (and
# not find them, because they're usually in non-standard locations)
if (USE_CUDA)
target_link_libraries(torch_global_deps ${TORCH_CUDA_LIBRARIES})
target_link_libraries(torch_global_deps ${Caffe2_PUBLIC_CUDA_DEPENDENCY_LIBS})
target_link_libraries(torch_global_deps torch::cudart)
endif()
install(TARGETS torch_global_deps DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
# ---[ Caffe2 HIP sources.
if(USE_ROCM)
# Call again since Caffe2_HIP_INCLUDE is extended with ATen include dirs.
# Get Compile Definitions from the directory (FindHIP.cmake bug)
get_directory_property(MY_DEFINITIONS COMPILE_DEFINITIONS)
if(MY_DEFINITIONS)
foreach(_item ${MY_DEFINITIONS})
LIST(APPEND HIP_HCC_FLAGS "-D${_item}")
endforeach()
endif()
# Call again since Caffe2_HIP_INCLUDE is extended with ATen include dirs.
hip_include_directories(${Caffe2_HIP_INCLUDE})
# Since PyTorch files contain HIP headers, these flags are required for the necessary definitions to be added.
target_compile_options(torch_hip PUBLIC ${HIP_CXX_FLAGS}) # experiment
target_link_libraries(torch_hip PUBLIC c10_hip)
if(NOT INTERN_BUILD_MOBILE)
# TODO: Cut this over to ATEN_HIP_FILES_GEN_LIB. At the moment, we
# only generate CUDA files
# NB: This dependency must be PRIVATE, because we don't install
# ATEN_CUDA_FILES_GEN_LIB (it's a synthetic target just to get the
# correct dependency from generated files.)
target_link_libraries(torch_hip PRIVATE ATEN_CUDA_FILES_GEN_LIB)
endif()
target_link_libraries(torch_hip PUBLIC torch_cpu_library ${Caffe2_HIP_DEPENDENCY_LIBS})
# Since PyTorch files contain HIP headers, this is also needed to capture the includes.
target_include_directories(torch_hip PRIVATE ${Caffe2_HIP_INCLUDE})
target_include_directories(torch_hip INTERFACE $<INSTALL_INTERFACE:include>)
endif()
# ---[ Test binaries.
if (BUILD_TEST)
foreach(test_src ${Caffe2_CPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} ${Caffe2_MAIN_LIBS} gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if (INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
# Install PDB files for MSVC builds
if (MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:${test_name}> DESTINATION test OPTIONAL)
endif()
endif()
endforeach()
if (USE_CUDA)
foreach(test_src ${Caffe2_GPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
cuda_add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} ${Caffe2_MAIN_LIBS} gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if (INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
# Install PDB files for MSVC builds
if (MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:${test_name}> DESTINATION test OPTIONAL)
endif()
endif()
endforeach()
endif()
if(USE_ROCM)
foreach(test_src ${Caffe2_HIP_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} ${Caffe2_MAIN_LIBS} gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE} ${Caffe2_HIP_INCLUDE})
target_compile_options(${test_name} PRIVATE ${HIP_CXX_FLAGS})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if (INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
endif()
endforeach()
endif()
# For special tests that explicitly uses dependencies, we add them here
if (USE_MPI)
target_link_libraries(mpi_test ${MPI_CXX_LIBRARIES})
if (USE_CUDA)
target_link_libraries(mpi_gpu_test ${MPI_CXX_LIBRARIES})
endif()
endif()
endif()
# Note: we only install the caffe2 python files if BUILD_CAFFE2_OPS is ON
# This is because the build rules here written in such a way that they always
# appear to need to be re-run generating >600 pieces of work during the pytorch
# rebuild step. The long-term fix should be to clean up these rules so they
# only rerun when needed.
if (BUILD_PYTHON)
# Python site-packages
# Get canonical directory for python site packages (relative to install
# location). It varies from system to system.
# We should pin the path separator to the forward slash on Windows.
# More details can be seen at
# https://github.com/pytorch/pytorch/tree/master/tools/build_pytorch_libs.bat#note-backslash-munging-on-windows
pycmd(PYTHON_SITE_PACKAGES "
import os
from distutils import sysconfig
print(sysconfig.get_python_lib(prefix=''))
")
file(TO_CMAKE_PATH ${PYTHON_SITE_PACKAGES} PYTHON_SITE_PACKAGES)
SET(PYTHON_SITE_PACKAGES ${PYTHON_SITE_PACKAGES} PARENT_SCOPE) # for Summary
# ---[ Options.
SET(PYTHON_LIB_REL_PATH "${PYTHON_SITE_PACKAGES}" CACHE STRING "Python installation path (relative to CMake installation prefix)")
message(STATUS "Using ${PYTHON_LIB_REL_PATH} as python relative installation path")
# Python extension suffix
# Try to get from python through sysconfig.get_env_var('EXT_SUFFIX') first,
# fallback to ".pyd" if windows and ".so" for all others.
pycmd(PY_EXT_SUFFIX "
from distutils import sysconfig
ext_suffix = sysconfig.get_config_var('EXT_SUFFIX')
print(ext_suffix if ext_suffix else '')
")
if("${PY_EXT_SUFFIX}" STREQUAL "")
if (MSVC)
set(PY_EXT_SUFFIX ".pyd")
else()
set(PY_EXT_SUFFIX ".so")
endif()
endif()
# Allow different install locations for libcaffe2
# For setuptools installs (that all build Python), install libcaffe2 into
# site-packages, alongside the torch libraries. The pybind11 library needs
# an rpath to the torch library folder
# For cmake installs, including c++ only installs, install libcaffe2 into
# CMAKE_INSTALL_PREFIX/lib . The pybind11 library can have a hardcoded
# rpath
set(caffe2_pybind11_rpath "${_rpath_portable_origin}")
if(${BUILDING_WITH_TORCH_LIBS})
# site-packages/caffe2/python/caffe2_pybind11_state
# site-packages/torch/lib
set(caffe2_pybind11_rpath "${_rpath_portable_origin}/../../torch/lib")
endif(${BUILDING_WITH_TORCH_LIBS})
# Must also include `CMAKE_SHARED_LINKER_FLAGS` in linker flags for
# `caffe2_pybind11_state_*` targets because paths to required libraries may
# need to be found there (e.g., specifying path to `libiomp5` with `LDFLAGS`).
set(_caffe2_pybind11_state_linker_flags "${CMAKE_SHARED_LINKER_FLAGS}")
if (APPLE)
set(_caffe2_pybind11_state_linker_flags "${_caffe2_pybind11_state_linker_flags} -undefined dynamic_lookup")
endif()
# ---[ Python.
add_library(caffe2_pybind11_state MODULE ${Caffe2_CPU_PYTHON_SRCS})
if (NOT MSVC)
set_target_properties(caffe2_pybind11_state PROPERTIES COMPILE_FLAGS "-fvisibility=hidden")
endif()
set_target_properties(caffe2_pybind11_state PROPERTIES PREFIX "" DEBUG_POSTFIX "")
set_target_properties(caffe2_pybind11_state PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state PRIVATE ${Caffe2_CPU_INCLUDE})
target_link_libraries(
caffe2_pybind11_state torch_library)
if (WIN32)
target_link_libraries(caffe2_pybind11_state ${PYTHON_LIBRARIES})
target_link_libraries(caffe2_pybind11_state onnx_proto)
endif(WIN32)
# Install caffe2_pybind11_state(_gpu|hip) in site-packages/caffe2/python,
# so it needs an rpath to find libcaffe2
set_target_properties(
caffe2_pybind11_state PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
if (MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:caffe2_pybind11_state> DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python" OPTIONAL)
endif()
set_target_properties(caffe2_pybind11_state PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
if(USE_CUDA)
add_library(caffe2_pybind11_state_gpu MODULE ${Caffe2_GPU_PYTHON_SRCS})
if (NOT MSVC)
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES COMPILE_FLAGS "-fvisibility=hidden")
endif()
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES PREFIX "" DEBUG_POSTFIX "")
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state_gpu PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state_gpu PRIVATE ${Caffe2_CPU_INCLUDE})
target_link_libraries(caffe2_pybind11_state_gpu torch_library)
if (WIN32)
target_link_libraries(caffe2_pybind11_state_gpu ${PYTHON_LIBRARIES})
target_link_libraries(caffe2_pybind11_state_gpu onnx_proto)
endif(WIN32)
# Install with same rpath as non-gpu caffe2_pybind11_state
set_target_properties(
caffe2_pybind11_state_gpu PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state_gpu DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
if (MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:caffe2_pybind11_state_gpu> DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python" OPTIONAL)
endif()
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
endif()
if(USE_ROCM)
add_library(caffe2_pybind11_state_hip MODULE ${Caffe2_HIP_PYTHON_SRCS})
if (NOT MSVC)
target_compile_options(caffe2_pybind11_state_hip PRIVATE ${HIP_CXX_FLAGS} -fvisibility=hidden)
endif()
set_target_properties(caffe2_pybind11_state_hip PROPERTIES PREFIX "")
set_target_properties(caffe2_pybind11_state_hip PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state_hip PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state_hip PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state_hip PRIVATE ${Caffe2_CPU_INCLUDE} ${Caffe2_HIP_INCLUDE})
target_link_libraries(caffe2_pybind11_state_hip torch_library)
if (WIN32)
target_link_libraries(caffe2_pybind11_state_hip ${PYTHON_LIBRARIES})
endif(WIN32)
# Install with same rpath as non-hip caffe2_pybind11_state
set_target_properties(
caffe2_pybind11_state_hip PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state_hip DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
set_target_properties(caffe2_pybind11_state_hip PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
endif()
if (MSVC AND CMAKE_GENERATOR MATCHES "Visual Studio")
# If we are building under windows, we will copy the file from
# build/caffe2/python/{Debug,Release}/caffe2_pybind11_state.pyd
# to its parent folder so that we can do in-build execution.
add_custom_target(windows_python_copy_lib ALL)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state>
${CMAKE_BINARY_DIR}/caffe2/python)
if (USE_CUDA)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state_gpu)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state_gpu>
${CMAKE_BINARY_DIR}/caffe2/python)
endif()
if (USE_ROCM)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state_hip)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state_hip>
${CMAKE_BINARY_DIR}/caffe2/python)
endif()
endif()
# Finally, Copy all python files to build directory
# Create a custom target that copies all python files.
file(GLOB_RECURSE PYTHON_SRCS RELATIVE ${PROJECT_SOURCE_DIR}
"${PROJECT_SOURCE_DIR}/caffe2/*.py")
# generated pb files are copied from build/caffe2 to caffe2
# if we copied them back to build this would create a build cycle
# consider removing the need for globs
filter_list_exclude(PYTHON_SRCS PYTHON_SRCS "proto/.*_pb")
set(build_files)
foreach(python_src ${PYTHON_SRCS})
add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/${python_src}
DEPENDS ${PROJECT_SOURCE_DIR}/${python_src}
COMMAND ${CMAKE_COMMAND} -E copy
${PROJECT_SOURCE_DIR}/${python_src}
${CMAKE_BINARY_DIR}/${python_src})
list(APPEND build_files ${CMAKE_BINARY_DIR}/${python_src})
endforeach()
add_custom_target(python_copy_files ALL DEPENDS ${build_files})
# Install commands
# Pick up static python files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
# Caffe proto files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
# Caffe2 proto files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
endif()
# Finally, set the Caffe2_MAIN_LIBS variable in the parent scope.
set(Caffe2_MAIN_LIBS ${Caffe2_MAIN_LIBS} PARENT_SCOPE)