Files
pytorch/torch/legacy/nn/Parallel.py
Luke Yeager e7c1e6a8e3 [pep8] Fix most lint automatically with autopep8
Here's the command I used to invoke autopep8 (in parallel!):

    git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i

Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.

Also configures flake8 to match pep8's behavior.

Also configures TravisCI to check the whole project for lint.
2017-01-28 01:15:51 +01:00

106 lines
3.7 KiB
Python

import torch
from .Container import Container
class Parallel(Container):
def __init__(self, inputDimension, outputDimension):
super(Parallel, self).__init__()
self.inputDimension = inputDimension
self.outputDimension = outputDimension
self.totalOutputSize = None
def updateOutput(self, input):
nModule = input.size(self.inputDimension)
outputs = []
for i in range(nModule):
currentInput = input.select(self.inputDimension, i)
currentOutput = self.modules[i].updateOutput(currentInput)
outputs.append(currentOutput)
outputSize = currentOutput.size(self.outputDimension)
if i == 0:
totalOutputSize = list(currentOutput.size())
else:
totalOutputSize[self.outputDimension] += outputSize
self.totalOutputSize = torch.Size(totalOutputSize)
self.output.resize_(self.totalOutputSize)
offset = 0
for i in range(nModule):
currentOutput = outputs[i]
outputSize = currentOutput.size(self.outputDimension)
self.output.narrow(self.outputDimension, offset, outputSize).copy_(currentOutput)
offset = offset + currentOutput.size(self.outputDimension)
return self.output
def updateGradInput(self, input, gradOutput):
nModule = input.size(self.inputDimension)
self.gradInput.resize_as_(input)
offset = 0
for i in range(nModule):
module = self.modules[i]
currentInput = input.select(self.inputDimension, i)
currentOutput = module.output
outputSize = currentOutput.size(self.outputDimension)
currentGradOutput = gradOutput.narrow(self.outputDimension, offset, outputSize)
currentGradInput = module.updateGradInput(currentInput, currentGradOutput)
self.gradInput.select(self.inputDimension, i).copy_(currentGradInput)
offset = offset + outputSize
return self.gradInput
def accGradParameters(self, input, gradOutput, scale=1):
nModule = input.size(self.inputDimension)
offset = 0
for i in range(nModule):
module = self.modules[i]
currentOutput = module.output
outputSize = currentOutput.size(self.outputDimension)
module.accGradParameters(
input.select(self.inputDimension, i),
gradOutput.narrow(self.outputDimension, offset, outputSize),
scale)
offset += outputSize
def accUpdateGradParameters(self, input, gradOutput, lr):
nModule = input.size(self.inputDimension)
offset = 0
for i in range(nModule):
module = self.modules[i]
currentOutput = module.output
module.accupdateGradParameters(
input.select(self.inputDimension, i),
gradOutput.narrow(self.outputDimension, offset, currentOutput.size(self.outputDimension)),
lr)
offset = offset + currentOutput.size(self.outputDimension)
def __repr__(self):
tab = ' '
line = '\n'
next = ' |`-> '
ext = ' | '
extlast = ' '
last = ' ... -> '
res = torch.typename(self)
res += ' {' + line + tab + 'input'
for i in range(len(self.modules)):
if i == len(self.modules) - 1:
res += line + tab + next + '(' + str(i) + '): ' + \
str(self.modules[i]).replace(line, line + tab + extlast)
else:
res += line + tab + next + '(' + str(i) + '): ' + str(self.modules[i]).replace(line, line + tab + ext)
res += line + tab + last + 'output'
res += line + '}'
return res