Files
pytorch/torch/csrc/jit/backends/backend_init.cpp
cyyever 24ca7e91e6 [1/N] Use internal linkage in torch/csrc C++ files. (#150930)
Turn more functions and variables into static if they are not used outside the cpp files. Unused functions are removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150930
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-04-11 02:19:31 +00:00

192 lines
7.3 KiB
C++

#include <torch/csrc/jit/backends/backend_init.h>
#include <pybind11/iostream.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_resolver.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/pybind.h>
namespace torch::jit {
// Get all types that are shared in the module hierarchy rooted at \p mod.
static std::unordered_set<TypePtr> getSharedModuleTypes(Module& mod) {
// Maintain a set of all TypePtrs.
std::unordered_set<TypePtr> types;
// Maintain another set of TypePtrs that have been encountered more than once.
std::unordered_set<TypePtr> duplicate_types;
// Iterate over all modules in the hierarchy, including the root.
for (auto module : mod.modules()) {
auto module_type = module.type();
if (types.count(module_type) > 0) {
duplicate_types.insert(module_type);
}
types.insert(module_type);
}
return duplicate_types;
}
// Selectively lower \p mod to a backend. \p to_backend
// is called to lower modules. \p modules_to_lower contains
// qualified names of submodules of \p mod that should be lowered.
static void toBackendSelectiveImpl(
Module& mod,
const py::function& to_backend,
const std::vector<std::string>& modules_to_lower,
const std::unordered_set<TypePtr>& duplicate_types) {
// This map will be used later to remap types in ancestor module graphs for
// all lowered submodules.
std::unordered_map<TypePtr, TypePtr> type_remap;
// For each module that should be lowered:
for (const auto& module_to_lower : modules_to_lower) {
// Use QualifiedName to parse the qualified module names.
c10::QualifiedName qual_module_name(module_to_lower);
auto& atoms = qual_module_name.atoms();
// Search through the module hierarchy using the atoms of
// qual_module_name until current points to the module to
// be lowered and parent points to its parent.
Module current = mod;
Module parent;
for (size_t i = 0, e = atoms.size(); i < e; ++i) {
IValue submodule = current.attr(atoms[i]);
if (submodule.isModule()) {
if (i == e - 1) {
parent = current;
}
current = submodule.toModule();
} else {
std::stringstream err;
err << "Attribute named " << atoms[i] << " is not a Module";
throw std::runtime_error(err.str());
}
}
// Check that the parent type is not shared and therefore can be edited.
if (duplicate_types.count(parent.type()) > 0) {
throw py::cast_error(c10::str(
"Selective lowering is only supported for module hierarchies with unique types for selected modules; ",
parent.type()->repr_str(),
" is shared"));
}
// Call to_backend on the module that needs to be lowered. It needs to be
// wrapped before doing so because _to_jit_backend accepts wrapped modules.
// The result needs to be unwrapped in order to access its type below.
auto lowered_submodule =
py::cast<Module>(to_backend(py::module::import("torch.jit._recursive")
.attr("wrap_cpp_module")(current))
.attr("_c"));
// Adjust the parent's type so that the type of the submodule matches
// the type of lowered_submodule.
auto parent_type = parent.type();
parent_type->unsafeChangeAttributeType(
atoms.back(), lowered_submodule.type());
parent.setattr(atoms.back(), lowered_submodule._ivalue());
// Record the type mapping from old type -> lowered type.
type_remap[current.type()] = lowered_submodule.type();
}
// Having lowered all of the modules that needed to be lowered, remap types in
// all graphs in the hierarchy so that the graphs all use the new lowered
// type.
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
// modules() iterates over all modules in the hierarchy including the root.
for (auto module : mod.modules()) {
auto module_type = module.type();
for (auto& fn : module_type->methods()) {
auto method = module.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
}
}
static Module codegen_func(
const std::string& backend_name,
const Module& orig_module,
const py::dict& method_compile_spec) {
// Represents of a Type of Dict[str, Any].
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
return detail::codegen_backend_module(
backend_name,
orig_module,
toIValue(method_compile_spec, any_dict_ty).toGenericDict(),
any_dict_ty);
}
void initJitBackendBindings(PyObject* module) {
// Bind a function for lowering to each JIT backend. The name of the backend
// must be the first argument. For example, to lower a Module to
// "example_backend", declared as
//
// static auto cls = torch::jit::backend<ExampleBackend>("example_backend");
//
// this function must be called like
//
// torch._C._jit_to_backend("example_backend", module, spec)
auto m = py::handle(module).cast<py::module>();
m.def(
"_jit_to_backend",
[=](const std::string& backend_name,
py::handle orig_module,
const py::dict& method_compile_spec) {
py::scoped_ostream_redirect cerr(
std::cerr, py::module_::import("sys").attr("stderr"));
py::scoped_ostream_redirect cout(
std::cout, py::module_::import("sys").attr("stdout"));
return py::module::import("torch.jit._recursive")
.attr("wrap_cpp_module")(codegen_func(
backend_name,
py::cast<Module>(orig_module.attr("_c")),
method_compile_spec));
});
m.def(
"_jit_to_backend_selective",
[=](py::handle orig_module,
const py::function& to_backend,
const std::vector<std::string>& modules_to_lower) {
py::scoped_ostream_redirect cerr(
std::cerr, py::module_::import("sys").attr("stderr"));
py::scoped_ostream_redirect cout(
std::cout, py::module_::import("sys").attr("stdout"));
if (auto original_module =
as_module(py::cast<py::object>(orig_module))) {
// Clone the Module to avoid editing types that are shared with
// Modules in other instances outside this hierarchy.
Module& mod = original_module.value();
auto cloned_mod = mod.clone();
// Get all shared module types. Type sharing is only a problem if the
// parent modules of the ones to lower are in this set.
auto shared_types = getSharedModuleTypes(cloned_mod);
toBackendSelectiveImpl(
cloned_mod, to_backend, modules_to_lower, shared_types);
// Wrap the result in a RecursiveScriptModule because that's what
// the caller passed in.
return py::module::import("torch.jit._recursive")
.attr("wrap_cpp_module")(cloned_mod);
}
throw py::cast_error(c10::str(
"Object ", py::str(orig_module), " is not a ScriptModule"));
});
}
} // namespace torch::jit