mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55114 Test Plan: CI Reviewed By: ezyang, bhosmer Differential Revision: D27472768 fbshipit-source-id: 76f17ef7de40f6e04e2968f8958027b5f93e1c0c
48 lines
1.2 KiB
C++
48 lines
1.2 KiB
C++
// This is a simple predictor binary that loads a TorchScript CV model and runs
|
|
// a forward pass with fixed input `torch::ones({1, 3, 224, 224})`.
|
|
// It's used for end-to-end integration test for custom mobile build.
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <torch/script.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace {
|
|
|
|
struct MobileCallGuard {
|
|
// Set InferenceMode for inference only use case.
|
|
c10::InferenceMode guard;
|
|
// Disable graph optimizer to ensure list of unused ops are not changed for
|
|
// custom mobile build.
|
|
torch::jit::GraphOptimizerEnabledGuard no_optimizer_guard{false};
|
|
};
|
|
|
|
torch::jit::Module loadModel(const std::string& path) {
|
|
MobileCallGuard guard;
|
|
auto module = torch::jit::load(path);
|
|
module.eval();
|
|
return module;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int main(int argc, const char* argv[]) {
|
|
if (argc < 2) {
|
|
std::cerr << "Usage: " << argv[0] << " <model_path>\n";
|
|
return 1;
|
|
}
|
|
auto module = loadModel(argv[1]);
|
|
auto input = torch::ones({1, 3, 224, 224});
|
|
auto output = [&]() {
|
|
MobileCallGuard guard;
|
|
return module.forward({input}).toTensor();
|
|
}();
|
|
|
|
std::cout << std::setprecision(3) << std::fixed;
|
|
for (int i = 0; i < 5; i++) {
|
|
std::cout << output.data_ptr<float>()[i] << std::endl;
|
|
}
|
|
return 0;
|
|
}
|