Files
pytorch/benchmarks/operator_benchmark/pt/boolean_test.py
Nicolas De Carli cbc08c8993 Add NEON acceleration for Vectorized<int[8|16|32|64> (#165273)
Summary:
Adding NEON specializations of Vectorized<T> for int8, int16, int32 and int64.

Correcness has been checked using test_ops.py and the comprehensive torch test

operator_benchmark_test.py has been enhanced by adding cases of bitwise operations, boolean ops and integer ops.
The benchmark, which uses the PyTorch API, shows significant enhancements in a wide variety of operations:

Before:

bitwise xor: 779.882us
boolean any: 636.209us
boolean all: 538.621us
integer mul: 304.457us
integer asr: 447.997us

After:

bitwise xor: 680.221us ---> 15% higher throughput
boolean any: 391.468us ---> 63% higher throughput
boolean all: 390.189us ---> 38% higher throughput
integer mul: 193.532us ---> 57% higher throughput
integer asr: 179.929us---> 149% higher throughput

Test Plan:
Correctness:

buck2 test @mode/opt //caffe2/test:test_ops
buck2 test @mode/opt //caffe2/test:torch
buck2 test @mode/opt //caffe2/test/distributed/launcher/fb:fb_run_test

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Differential Revision: D84424638

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165273
Approved by: https://github.com/malfet
2025-10-16 21:35:13 +00:00

74 lines
1.8 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for boolean operators. Supports both Caffe2/PyTorch."""
# Configs for PT all operator
all_long_configs = op_bench.cross_product_configs(
M=[8, 128], N=[32, 64], K=[256, 512], device=["cpu", "cuda"], tags=["long"]
)
all_short_configs = op_bench.config_list(
attr_names=["M", "N", "K"],
attrs=[
[1, 1, 1],
[64, 64, 64],
[64, 64, 128],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
class AllBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, device):
self.inputs = {
"input_one": torch.randint(0, 2, (M, N, K), device=device, dtype=torch.bool)
}
self.set_module_name("all")
def forward(self, input_one):
return torch.all(input_one)
# The generated test names based on all_short_configs will be in the following pattern:
# all_M8_N16_K32_devicecpu
# all_M8_N16_K32_devicecpu_bwdall
# all_M8_N16_K32_devicecpu_bwd1
# all_M8_N16_K32_devicecpu_bwd2
# ...
# Those names can be used to filter tests.
op_bench.generate_pt_test(all_long_configs + all_short_configs, AllBenchmark)
"""Mircobenchmark for any operator."""
class AnyBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
self.inputs = {
"input_one": torch.randint(0, 2, (M, N), device=device, dtype=torch.bool)
}
self.set_module_name("any")
def forward(self, input_one):
return torch.any(input_one)
any_configs = op_bench.cross_product_configs(
M=[8, 256],
N=[256, 16],
device=["cpu", "cuda"],
tags=["any"],
)
op_bench.generate_pt_test(any_configs, AnyBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()