mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This reverts commit eeeb40b32717bab75bd7d8f28f8343385688b3ab. Reverted https://github.com/pytorch/pytorch/pull/112278 on behalf of https://github.com/PaliC due to Reverting this pr as the one under it in the stack is causing regressions in torchrec ([comment](https://github.com/pytorch/pytorch/pull/112278#issuecomment-1806044435))
342 lines
13 KiB
Python
342 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
import functools
|
|
import operator
|
|
from typing import cast, Dict, List, Optional, Sequence, Tuple
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
import torch.distributed._tensor.api as dtensor
|
|
import torch.distributed._tensor.random as random
|
|
from torch.distributed._tensor.device_mesh import DeviceMesh
|
|
from torch.distributed._tensor.op_schema import (
|
|
_is_inplace_op,
|
|
_is_out_variant_op,
|
|
OpInfo,
|
|
OpSchema,
|
|
OutputSharding,
|
|
OutputSpecType,
|
|
)
|
|
from torch.distributed._tensor.placement_types import DTensorSpec, Replicate, TensorMeta
|
|
from torch.distributed._tensor.random import is_rng_supported_mesh
|
|
from torch.distributed._tensor.redistribute import redistribute_local_tensor
|
|
from torch.distributed._tensor.sharding_prop import ShardingPropagator
|
|
|
|
try:
|
|
from torch.utils import _cxx_pytree as pytree
|
|
except ImportError:
|
|
from torch.utils import _pytree as pytree # type: ignore[no-redef]
|
|
|
|
aten = torch.ops.aten
|
|
|
|
_random_ops = {
|
|
aten.native_dropout.default,
|
|
aten.normal_.default,
|
|
aten.rand_like.default,
|
|
aten.randn_like.default,
|
|
aten.randint_like.default,
|
|
aten.randint_like.low_dtype,
|
|
aten.randint_like.low_dtype_out,
|
|
aten.uniform_.default,
|
|
}
|
|
|
|
|
|
def wrap(res: object, spec: OutputSpecType) -> object:
|
|
def to_dt(res, spec):
|
|
assert spec is not None and isinstance(
|
|
spec, DTensorSpec
|
|
), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
|
|
assert spec.tensor_meta is not None
|
|
return dtensor.DTensor(
|
|
res,
|
|
spec.mesh,
|
|
spec.placements,
|
|
shape=spec.tensor_meta.shape,
|
|
dtype=spec.tensor_meta.dtype,
|
|
requires_grad=res.requires_grad,
|
|
stride=spec.tensor_meta.stride,
|
|
)
|
|
|
|
if isinstance(res, torch.Tensor):
|
|
return to_dt(res, spec)
|
|
elif isinstance(res, (list, tuple)):
|
|
assert spec is not None and isinstance(
|
|
spec, (list, tuple)
|
|
), f"output spec does not match with output! Expected list/tuple, got {spec}."
|
|
res_list = []
|
|
for e, s in zip(res, spec):
|
|
# NOTE: local results might return Optional Tensor from ATen op, so we need
|
|
# to handle that case and make sure we don't wrap None with DTensor.
|
|
# (i.e. native_layer_norm.backward)
|
|
if isinstance(e, (list, tuple)) and isinstance(s, (list, tuple)):
|
|
res_list.append(type(e)([to_dt(ee, ss) for ee, ss in zip(e, s)]))
|
|
elif e is not None and s is not None:
|
|
res_list.append(to_dt(e, s))
|
|
else:
|
|
res_list.append(None) # type: ignore[arg-type]
|
|
|
|
return tuple(res_list) if isinstance(res, tuple) else res_list
|
|
else:
|
|
# if the res contains only non tensor values, we simply return it without rewrapping
|
|
return res
|
|
|
|
|
|
def redistribute_local_args(
|
|
op_info: OpInfo,
|
|
suggested_input_schema: OpSchema,
|
|
) -> None:
|
|
# NOTE: it's very rare that we need to reshard kwargs so we intentionally skip it
|
|
|
|
# TODO: the op schema should probably just remain flattened so that we can avoid this tree flatten
|
|
# Need to fix all the ops before doing this.
|
|
if op_info.args_tree_spec is not None:
|
|
flatten_args_schema_to_reshard = tuple(
|
|
pytree.tree_leaves(suggested_input_schema.args_schema)
|
|
)
|
|
else:
|
|
flatten_args_schema_to_reshard = suggested_input_schema.args_schema
|
|
|
|
new_local_args: List[object] = []
|
|
for i, arg_spec in enumerate(op_info.flat_args_schema):
|
|
reshard_arg_spec = flatten_args_schema_to_reshard[i]
|
|
if isinstance(arg_spec, DTensorSpec):
|
|
local_tensor = cast(torch.Tensor, op_info.local_args[i])
|
|
if arg_spec != reshard_arg_spec:
|
|
resharded_local_tensor = redistribute_local_tensor(
|
|
local_tensor, arg_spec, reshard_arg_spec
|
|
)
|
|
new_local_args.append(resharded_local_tensor)
|
|
else:
|
|
new_local_args.append(local_tensor)
|
|
else:
|
|
new_local_args.append(reshard_arg_spec)
|
|
|
|
op_info.local_args = tuple(new_local_args)
|
|
|
|
|
|
def operator_dispatch(
|
|
op_call: torch._ops.OpOverload,
|
|
args: Tuple[object, ...],
|
|
kwargs: Dict[str, object],
|
|
sharding_propagator: ShardingPropagator,
|
|
) -> object:
|
|
out, _, _ = _operator_dispatch(op_call, args, kwargs, sharding_propagator)
|
|
return out
|
|
|
|
|
|
def _operator_dispatch(
|
|
op_call: torch._ops.OpOverload,
|
|
args: Tuple[object, ...],
|
|
kwargs: Dict[str, object],
|
|
sharding_propagator: ShardingPropagator,
|
|
) -> Tuple[object, OpSchema, OutputSharding]:
|
|
runtime_schema_info = sharding_propagator.op_to_schema_info.get(op_call, None)
|
|
|
|
if runtime_schema_info is not None and runtime_schema_info.needs_pytree:
|
|
# flatten args/kwargs when necessary
|
|
tree_args, args_spec = pytree.tree_flatten(args)
|
|
args_list: Sequence[object] = tree_args
|
|
else:
|
|
args_list, args_spec = args, None
|
|
|
|
args_schema: List[object] = []
|
|
kwargs_schema: Dict[str, object] = {}
|
|
local_args: List[object] = []
|
|
local_kwargs: Dict[str, object] = {}
|
|
mesh: Optional[DeviceMesh] = None
|
|
|
|
for arg in args_list:
|
|
if isinstance(arg, dtensor.DTensor):
|
|
args_schema.append(arg._spec)
|
|
local_args.append(arg._local_tensor)
|
|
if mesh is not None:
|
|
if mesh != arg.device_mesh:
|
|
raise NotImplementedError(
|
|
f"{op_call}: DTensor does not support cross-mesh operation yet!"
|
|
)
|
|
else:
|
|
mesh = arg.device_mesh
|
|
elif isinstance(arg, torch.Tensor):
|
|
if arg.ndim == 0 and mesh is not None:
|
|
# scalar tensor can be safely treated as replicated
|
|
args_schema.append(
|
|
DTensorSpec(
|
|
mesh,
|
|
(Replicate(),) * mesh.ndim,
|
|
tensor_meta=TensorMeta(
|
|
shape=arg.shape, stride=arg.stride(), dtype=arg.dtype
|
|
),
|
|
)
|
|
)
|
|
local_args.append(arg)
|
|
else:
|
|
raise RuntimeError(
|
|
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
|
|
" torch.Tensor to DTensor before calling distributed operators!"
|
|
)
|
|
else:
|
|
args_schema.append(arg)
|
|
local_args.append(arg)
|
|
|
|
for k, v in kwargs.items():
|
|
if isinstance(v, dtensor.DTensor):
|
|
kwargs_schema[k] = v._spec
|
|
local_kwargs[k] = v._local_tensor
|
|
if mesh is not None:
|
|
if mesh != v.device_mesh:
|
|
raise NotImplementedError(
|
|
f"{op_call}: DTensor does not support cross-mesh operation yet!"
|
|
)
|
|
else:
|
|
mesh = v.device_mesh
|
|
elif isinstance(v, torch.Tensor):
|
|
raise RuntimeError(
|
|
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
|
|
" torch.Tensor to DTensor before calling distributed operators!"
|
|
)
|
|
else:
|
|
kwargs_schema[k] = v
|
|
local_kwargs[k] = v
|
|
|
|
assert mesh is not None, "found no DeviceMesh from dtensor args!"
|
|
op_info = OpInfo(
|
|
mesh,
|
|
OpSchema(
|
|
op_call,
|
|
pytree.tree_unflatten(args_schema, args_spec)
|
|
if args_spec
|
|
else tuple(args_schema),
|
|
kwargs_schema,
|
|
schema_info=runtime_schema_info,
|
|
),
|
|
args_schema,
|
|
tuple(local_args),
|
|
local_kwargs,
|
|
args_spec,
|
|
)
|
|
|
|
sharding_propagator.propagate(op_info)
|
|
output_sharding = op_info.output_sharding
|
|
assert output_sharding is not None, "output sharding should not be None"
|
|
|
|
if mesh.get_coordinate() is None:
|
|
# For a non-participating device, we do:
|
|
# 1. if the return type is scalar, set the local result to None.
|
|
# The local results from all devices will then be all-gathered
|
|
# and a reduce op will be performed on the list of results
|
|
# with appropriate operators:
|
|
# for bool type, we by default use AND to reduce;
|
|
# we can extend for more ops if necessary.
|
|
# 2. if the return type is Tensor or List[Tensor], return empty
|
|
# tensor(s) with correct dtype.
|
|
spec = output_sharding.output_spec
|
|
ret_list = op_info.schema.op._schema.returns
|
|
|
|
if spec is None:
|
|
# For a scalar return type, the non-participating device has None
|
|
# as its local result
|
|
local_results: object = None
|
|
else:
|
|
|
|
def default_tensor(spec: DTensorSpec) -> torch.Tensor:
|
|
if spec.tensor_meta is not None:
|
|
shape = spec.tensor_meta.shape
|
|
dtype = spec.tensor_meta.dtype
|
|
if len(shape) == 0:
|
|
# scalar tensor
|
|
return torch.zeros((), dtype=dtype)
|
|
else:
|
|
# non-scalar tensor
|
|
return torch.tensor([], dtype=dtype)
|
|
else:
|
|
raise RuntimeError(f"{spec} has no tensor metadata.")
|
|
|
|
if isinstance(spec, DTensorSpec):
|
|
# return a Tensor value
|
|
local_results = default_tensor(spec)
|
|
elif isinstance(spec, Sequence):
|
|
# return a List[Tensor] value
|
|
local_results = [
|
|
default_tensor(s) if s is not None else None for s in spec
|
|
]
|
|
assert isinstance(local_results, List)
|
|
if None in local_results:
|
|
ret_type = str(ret_list[0].type)
|
|
raise NotImplementedError(
|
|
f"return type {ret_type} in DTensor op is not supported"
|
|
)
|
|
else:
|
|
if output_sharding.needs_redistribute:
|
|
# compute locally with redistribute first if needed
|
|
assert output_sharding.schema_suggestions is not None
|
|
suggested_input_schema = output_sharding.schema_suggestions[0]
|
|
redistribute_local_args(op_info, suggested_input_schema)
|
|
|
|
local_tensor_args = (
|
|
pytree.tree_unflatten(cast(List[object], op_info.local_args), args_spec)
|
|
if args_spec
|
|
else op_info.local_args
|
|
)
|
|
|
|
# run local op computation with potentially modified args/kwargs
|
|
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
|
|
if op_call in _random_ops and is_rng_supported_mesh(mesh):
|
|
if not random._rng_tracker:
|
|
raise RuntimeError(
|
|
"A CudaRNGStateTracker instance must be instantiated "
|
|
"before executing a random op over a DTensor. "
|
|
"Try calling random.manual_seed() or distribute_tensor() "
|
|
"before executing a DTensor random op."
|
|
)
|
|
# For DTensor random operator, run it within a distribute region
|
|
with random._rng_tracker._distribute_region(
|
|
cast(DTensorSpec, args_schema[0])
|
|
):
|
|
local_results = op_call(*local_tensor_args, **local_kwargs)
|
|
else:
|
|
local_results = op_call(*local_tensor_args, **local_kwargs)
|
|
|
|
# communicate the result to all ranks for some operators that return scalar value
|
|
if output_sharding.output_spec is None:
|
|
if op_call == aten.equal.default:
|
|
obj_list = [None for _ in range(dist.get_world_size())]
|
|
dist.all_gather_object(obj_list, local_results)
|
|
obj_list = list(filter(lambda x: x is not None, obj_list))
|
|
# perform reduce on the collection with AND op
|
|
local_results = functools.reduce(operator.and_, obj_list, True)
|
|
|
|
if _is_inplace_op(op_call):
|
|
# inplace op should return self instead of re-wrapping
|
|
if output_sharding.output_spec is not None:
|
|
return args[0], op_info.schema, output_sharding
|
|
else:
|
|
return None, op_info.schema, output_sharding
|
|
elif _is_out_variant_op(op_call):
|
|
# out variant could possibly have multiple out args (i.e. lu_unpack.out)
|
|
output_specs = (
|
|
(output_sharding.output_spec,)
|
|
if not isinstance(output_sharding.output_spec, tuple)
|
|
else output_sharding.output_spec
|
|
)
|
|
out_dts = []
|
|
spec_idx = 0
|
|
for argument in op_call._schema.arguments:
|
|
if argument.is_out:
|
|
out_dt = cast(dtensor.DTensor, kwargs[argument.name])
|
|
out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
|
|
out_dts.append(out_dt)
|
|
spec_idx += 1
|
|
|
|
assert len(out_dts) >= 1, "out variant should have at least one out arg"
|
|
return (
|
|
tuple(out_dts) if len(out_dts) > 1 else out_dts[0],
|
|
op_info.schema,
|
|
output_sharding,
|
|
)
|
|
else:
|
|
return (
|
|
wrap(local_results, output_sharding.output_spec),
|
|
op_info.schema,
|
|
output_sharding,
|
|
)
|