Files
pytorch/test/inductor/test_torchinductor_opinfo.py
Matthew Sterrett 239a9ad65e Adds support for accelerated sorting with x86-simd-sort (#127936)
Adds x86-simd-sort as a submodule to accelerate sorting for 32-bit and 64-bit datatypes when AVX2 or AVX512 are available.

For contiguous data, this can be over a 10x speedup for large arrays. For discontiguous data, it can give over a 4x speedup with larger arrays. These benchmarks were gathered on a Skylake system (7900x), limited to 8 threads.

<details>
<summary><b>Contiguous Benchmarks</b></summary>

```
float32, normally distributed (in microseconds)
size           Default        AVX2           AVX512         Default/AVX2   Default/AVX512
16             7.150844336    6.886271477    7.132277489    1.038420335    1.002603214
128            9.208030939    8.478154898    7.846915245    1.086089019    1.173458697
1024           37.79037627    23.60707456    16.44122627    1.600807257    2.298513241
10000          714.7355628    203.9921844    105.5683001    3.503739934    6.770361577
100000         8383.074408    721.6333354    465.3709247    11.61680593    18.01374766
1000000        97124.31945    5632.054572    3920.148401    17.24491803    24.77567416
10000000       1161974.907    86070.48988    71533.82301    13.50027063    16.24371323

int32_t, uniformly distributed (in microseconds)
size           Default        AVX2           AVX512         Default/AVX2   Default/AVX512
16             7.203208685    6.92212224     7.014458179    1.040606975    1.026908779
128            8.972388983    8.195516348    7.592543125    1.094792396    1.18173698
1024           32.77489477    23.6874548     15.36617105    1.383639359    2.132925285
10000          607.8824128    193.3402024    99.25090471    3.144107667    6.124703997
100000         523.9384684    608.1836536    442.3166784    0.861480682    1.184532472
1000000        5211.348627    5271.598405    3518.861883    0.988570871    1.480975611
10000000       133853.6263    81463.05084    67852.97394    1.643120714    1.972700952
```

</details>

Note that the int32_t sort is accelerated by FBGEMM's radix sort for larger arrays, but this only handles contiguous data and in one sorting direction.

<details>
<summary><b>Discontiguous Benchmarks</b></summary>

```
float, normal distributed, discontiguous in sorted dimension (in microseconds)
size           Default        AVX2           AVX512         Default/AVX2   Default/AVX512
16             3.836543679    4.011214256    3.84376061     0.956454439    0.99812243
128            5.755310194    5.755723127    4.820394962    0.999928257    1.193949923
1024           49.46946019    24.78790785    15.47874362    1.995709379    3.195960952
10000          665.2505291    236.6165959    143.9490662    2.811512551    4.621429974
100000         4328.002203    1329.001212    818.3516414    3.256582586    5.288682743
1000000        47651.5018     16693.72045    11827.39551    2.854456677    4.028909133
10000000       556655.1288    236252.6258    184215.9828    2.356185998    3.021752621

int32_t, uniformly distributed, discontiguous in sorted dimension  (in microseconds)
size           Default        AVX2           AVX512         Default/AVX2   Default/AVX512
16             3.817994356    3.878117442    3.770039797    0.984496837    1.012719908
128            5.578731397    5.577152082    4.716770534    1.000283176    1.182743862
1024           43.3412619     23.61275801    14.55446819    1.835501887    2.977866408
10000          634.3997478    224.4322851    133.9518324    2.826686667    4.736028889
100000         4084.358152    1292.363303    781.7867576    3.16037924     5.22438902
1000000        46262.20465    16608.35284    11367.51817    2.785478192    4.06968381
10000000       541231.9104    235185.1861    180249.9294    2.301301028    3.002674742
```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127936
Approved by: https://github.com/jgong5, https://github.com/peterbell10
2024-09-20 21:19:33 +00:00

1209 lines
45 KiB
Python

# Owner(s): ["module: inductor"]
import atexit
import contextlib
import functools
import os
import sys
import unittest
from collections import defaultdict
from enum import Enum
from functools import partial
from unittest.mock import patch
import torch
from torch._dispatch.python import enable_python_dispatcher
from torch._inductor.test_case import run_tests, TestCase
from torch._subclasses.fake_tensor import (
DataDependentOutputException,
DynamicOutputShapeException,
FakeTensorMode,
)
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyNativeDeviceTypes,
OpDTypes,
ops,
skipCPUIf,
skipCUDAIf,
skipXPUIf,
)
from torch.testing._internal.common_methods_invocations import op_db, skipOps
from torch.testing._internal.common_utils import (
dtype_abbrs,
IS_MACOS,
IS_X86,
skipCUDAMemoryLeakCheckIf,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_MKL,
TEST_WITH_ASAN,
TEST_WITH_ROCM,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, HAS_CUDA, HAS_XPU
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map
try:
try:
from .test_torchinductor import check_model, check_model_gpu
except ImportError:
from test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_gpu,
)
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
bf16 = torch.bfloat16 # not tested
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
i8 = torch.int8 # not tested
i16 = torch.int16 # not tested
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8 # not tested except upsampling and interpolate ops
u16 = torch.uint16 # not tested
u32 = torch.uint32 # not tested
u64 = torch.uint64 # not tested
_ops = partial(
ops,
dtypes=OpDTypes.supported,
allowed_dtypes=[f16, f32, f64, i32, i64, b8, u8, u16, u32, u64],
)
# Success forces pass; failure forces fail; skip unconditionally skips testing
ExpectedTestResult = Enum("ExpectedTestResult", ("SUCCESS", "XFAILURE", "SKIP"))
COLLECT_EXPECT = os.getenv("PYTORCH_COLLECT_EXPECT", "0") == "1"
ALL_SAMPLES = os.getenv("PYTORCH_ALL_SAMPLES", "0") == "1"
START = os.getenv("PYTORCH_TEST_RANGE_START", None)
END = os.getenv("PYTORCH_TEST_RANGE_END", None)
if START is not None or END is not None:
assert END is not None
assert START is not None
START = int(START)
END = int(END)
assert START < END
else:
START = 0
END = len(op_db)
seen_failed = defaultdict(set)
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = defaultdict(list)
def fmt_dtypes(dtypes):
r = ", ".join(sorted(dtype_abbrs[d] for d in dtypes))
return "{" + r + "}"
def sort_key(kv):
k, v = kv
device_type, op = k
if isinstance(op, tuple):
return op
else:
return op, ""
for (device_type, op), failed_dtypes in sorted(seen_failed.items(), key=sort_key):
key = device_type, op
reasons = ""
if failed_reasons[key]:
def maybe_truncate(x, length=80):
x = str(x).replace("\n", " ")
idx = x.find("\\n")
if idx >= 0:
x = f"{x[:idx]}..."
if len(x) > length:
return f"{x[:length - 3]}..."
return x
reasons = sorted(set(map(maybe_truncate, failed_reasons[key])))
reasons = " # " + ", ".join(reasons)
if failed_dtypes:
def format_op(op):
if isinstance(op, tuple):
return f'("{op[0]}", "{op[1]}")'
else:
return f'"{op}"'
expected_failures[device_type].append(
f" {format_op(op)}: {fmt_dtypes(failed_dtypes)},{reasons}"
)
for device_type in ("cpu", GPU_TYPE):
expected_failures[device_type]
nl = "\n"
print(
f"""
inductor_expected_failures_single_sample[\"{device_type}\"] = {{
{nl.join(expected_failures[device_type])}
}}
"""
)
if COLLECT_EXPECT:
atexit.register(print_seen)
# Note, in these skip/xfail dictionaries use a string as the key
# for the default test, and a tuple of two strings for variants
inductor_skips = defaultdict(dict)
inductor_skips["cpu"] = {
"linalg.ldl_factor": {f32, f64}, # flaky
"nn.functional.cosine_embedding_loss": {b8}, # flaky
("index_reduce", "prod"): {f16}, # flaky
("index_reduce", "mean"): {f16}, # flaky
}
if IS_MACOS and IS_X86:
inductor_skips["cpu"]["rsqrt"] = {b8, i32}
inductor_skips["cpu"]["nn.functional.multi_margin_loss"] = {
b8,
f16,
f32,
f64,
i32,
i64,
}
inductor_skips["cuda"] = {
# Jiterator kernel is not expected to work with inductor
"jiterator_2inputs_2outputs": {b8, f16, f32, f64, i32, i64},
"jiterator_4inputs_with_extra_args": {b8, f16, f32, f64, i32, i64},
"jiterator_binary": {b8, f16, f32, f64, i32, i64},
"jiterator_binary_return_by_ref": {b8, f16, f32, f64, i32, i64},
"jiterator_unary": {b8, f16, f32, f64, i32, i64},
# flaky
"nn.functional.cosine_embedding_loss": {b8},
"native_batch_norm": {f16, f32, f64},
"_native_batch_norm_legit": {f16, f32, f64},
"_batch_norm_with_update": {f16, f32, f64},
}
if not SM80OrLater:
inductor_skips["cuda"]["bfloat16"] = {b8, f16, f32, f64, i32, i64}
if TEST_WITH_ROCM:
# Tensors are not alike
inductor_skips["cuda"]["logcumsumexp"] = {f32}
inductor_skips["cuda"]["special.modified_bessel_i1"] = {f64}
inductor_skips["xpu"] = {}
inductor_expected_failures_single_sample = defaultdict(dict)
inductor_expected_failures_single_sample["cpu"] = {
"_softmax_backward_data": {
f16
}, # half_to_float is only valid for the CUDA implementation
"_upsample_bilinear2d_aa": {f32, f64},
"cholesky": {f32, f64},
"complex": {f16},
"resize_": {b8, f16, f32, f64, i32, i64},
"resize_as_": {b8, f16, f32, f64, i32, i64},
"histc": {f16},
"multinomial": {f16, f32, f64},
"nn.functional.avg_pool1d": {i64},
"nn.functional.avg_pool2d": {i64},
"nn.functional.avg_pool3d": {i64},
"nn.functional.local_response_norm": {i64},
"nn.functional.rrelu": {f32, f64},
"nonzero_static": {b8, f16, f32, f64, i32, i64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
("sparse.mm", "reduce"): {f32, f64, f16},
"sparse.sampled_addmm": {f32, f64},
"to_sparse": {
f32,
f64,
}, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCPU
"view_as_complex": {f16},
}
inductor_expected_failures_single_sample["cuda"] = {
"_upsample_bilinear2d_aa": {f16, f32, f64},
"cholesky": {f32, f64},
"multinomial": {f16, f32, f64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
"torch.ops.aten._flash_attention_forward": {f16},
"torch.ops.aten._efficient_attention_forward": {f16, f32},
"to_sparse": {
f16,
f32,
f64,
}, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCUDA
}
inductor_expected_failures_single_sample["xpu"] = {
"_upsample_bilinear2d_aa": {f16, f32, f64},
"cholesky": {f32, f64},
"multinomial": {f16, f32, f64},
("normal", "in_place"): {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"normal": {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
"tan": {f16},
"torch.ops.aten._flash_attention_forward": {f16},
"torch.ops.aten._efficient_attention_forward": {f16, f32},
"to_sparse": {f16, f32, f64, b8, i32, i64},
"linalg.eig": {f32, f64},
"linalg.eigvals": {f32, f64},
# Double and complex datatype matmul is not supported in oneDNN
"__rmatmul__": {f64},
("addmm", "decomposed"): {f64},
"addr": {f64},
"baddbmm": {f64},
"bmm": {f64},
"byte": {f16, f32},
"cdist": {f64},
"corrcoef": {f64},
"cov": {f64},
"einsum": {f64},
"inner": {f64},
"linalg.cholesky_ex": {f64},
"linalg.cholesky": {f64},
("linalg.det", "singular"): {f64},
"linalg.ldl_factor_ex": {f64},
"linalg.ldl_factor": {f64},
"linalg.ldl_solve": {f64},
"linalg.matrix_power": {f64},
"linalg.multi_dot": {f64},
"matmul": {f64},
"mm": {f64},
"mv": {f64},
"nn.functional.bilinear": {f64},
"nn.functional.linear": {f64},
"pca_lowrank": {f64},
"svd_lowrank": {f64},
"tensordot": {f64},
"triangular_solve": {f64},
"svd": {f64},
"qr": {f64},
"pinverse": {f64},
"ormqr": {f64},
("norm", "nuc"): {f64},
"lu": {f64},
"lu_solve": {f64},
"logdet": {f64},
"linalg.tensorsolve": {f64},
"linalg.tensorinv": {f64},
"linalg.svdvals": {f64},
"linalg.svd": {f64},
"linalg.solve": {f64},
"linalg.solve_triangular": {f64},
"linalg.solve_ex": {f64},
"linalg.slogdet": {f64},
"linalg.qr": {f64},
"linalg.pinv": {f64},
("linalg.pinv", "hermitian"): {f64},
"linalg.norm": {f64},
("linalg.norm", "subgradients_at_zero"): {f64},
"linalg.matrix_rank": {f64},
("linalg.matrix_rank", "hermitian"): {f64},
"linalg.matrix_norm": {f64},
"linalg.lu": {f64},
"linalg.lu_solve": {f64},
"linalg.lu_factor": {f64},
"linalg.lu_factor_ex": {f64},
"linalg.lstsq": {f64},
("linalg.lstsq", "grad_oriented"): {f64},
"linalg.inv": {f64},
"linalg.inv_ex": {f64},
"linalg.householder_product": {f64},
"linalg.eigvalsh": {f64},
"linalg.eigh": {f64},
"linalg.det": {f64},
"linalg.cond": {f64},
"geqrf": {f64},
"cholesky_solve": {f64},
"cholesky_inverse": {f64},
# could not create a primitive
"addbmm": {f16, f32, f64},
"addmm": {f16, f32, f64},
"addmv": {f32, f64},
# could not create a primitive descriptor for
# a deconvolution forward propagation primitive
"nn.functional.conv_transpose2d": {f32, f64},
"nn.functional.conv_transpose3d": {f32, f64},
# rrelu not supported on XPU now
"nn.functional.rrelu": {f16, f32, f64},
"histc": {i32, i64},
# not implemented for 'Half'
"nn.functional.multilabel_margin_loss": {f16},
"nn.functional.multi_margin_loss": {f16},
"nn.functional.avg_pool3d": {f16},
"nn.functional.adaptive_max_pool3d": {f16},
# not implemented for 'Bool'
"nn.functional.unfold": {b8},
}
# intentionally not handled
intentionally_not_handled = {
"resize_": {b8, f16, f32, f64, i32, i64},
"resize_as_": {b8, f16, f32, f64, i32, i64},
}
# This is only fixed when this config is set
# We should eventually always turn it on
import torch._functorch.config as functorch_config
if not functorch_config.view_replay_for_aliased_outputs:
intentionally_not_handled['("as_strided", "partial_views")'] = {
b8,
f16,
f32,
f64,
i32,
i64,
}
inductor_expected_failures_single_sample["cuda"].update(intentionally_not_handled)
inductor_expected_failures_single_sample["xpu"].update(intentionally_not_handled)
inductor_gradient_expected_failures_single_sample = defaultdict(dict)
inductor_gradient_expected_failures_single_sample["cuda"] = {}
inductor_gradient_expected_failures_single_sample["xpu"] = {}
if not TEST_MKL:
inductor_expected_failures_single_sample["cpu"].update({})
inductor_should_fail_with_exception = defaultdict(dict)
inductor_should_fail_with_exception["cpu"] = {}
inductor_should_fail_with_exception["cuda"] = {}
inductor_should_fail_with_exception["xpu"] = {}
def get_skips_and_xfails(from_dict, xfails=True):
retval = set()
for device, d in from_dict.items():
for op, dtypes in d.items():
if type(op) is tuple:
op, variant_name = op
else:
variant_name = ""
retval.add((op, variant_name, device, tuple(dtypes), xfails))
return retval
# Note: if you get a "AssertionError: Couldn't find OpInfo for ..." error for an OpInfo you are sure
# exists, you might be trying to use a test variant and you need to replace, for example,
# "max.reduction_no_dim" with ("max", "reduction_no_dim") as the key of one of these dictionaries
test_skips_or_fails = (
get_skips_and_xfails(inductor_skips, xfails=False)
| get_skips_and_xfails(inductor_expected_failures_single_sample, xfails=True)
| get_skips_and_xfails(
inductor_gradient_expected_failures_single_sample, xfails=True
)
)
def wrapper_noop_set_seed(op, *args, **kwargs):
return op(*args, **kwargs)
torch.testing._internal.common_methods_invocations.wrapper_set_seed = (
wrapper_noop_set_seed
)
# key can be either op_name, or (op_name, dtype)
inductor_override_kwargs = defaultdict(dict)
inductor_override_kwargs["cpu"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
("nn.functional.multilabel_soft_margin_loss", f16): {
"atol": 3e-4,
"rtol": 0.002,
},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("polygamma.polygamma_n_0", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_1", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_2", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_3", f32): {"atol": 1e-3, "rtol": 1e-4},
("polygamma.polygamma_n_4", f32): {"atol": 1e-3, "rtol": 1e-4},
("special.polygamma.special_polygamma_n_0", f32): {
"atol": 1e-3,
"rtol": 1e-4,
},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-4, "rtol": 0.01},
# Following tests are failing with strict comparision but atol=1 is acceptable due roundings errors
("nn.functional.interpolate.bilinear", u8): {"atol": 1, "rtol": 0},
("nn.functional.upsample_bilinear", u8): {"atol": 1, "rtol": 0},
("nn.functional.interpolate.bicubic", u8): {"atol": 1, "rtol": 0},
# High atol due to precision loss
("nn.functional.interpolate.bicubic", f32): {"atol": 5e-3, "rtol": 0},
# reference_in_float can cause erroneous failures in sorting tests
"argsort": {"reference_in_float": False},
"sort": {"reference_in_float": False},
}
inductor_override_kwargs["cuda"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
("cross", f16): {"reference_in_float": True},
("linalg.cross", f16): {"reference_in_float": True},
("addr", f16): {"reference_in_float": True},
("baddbmm", f16): {"atol": 2e-3, "rtol": 0.002}, # decomp affects accuracy
("angle", f64): {"reference_in_float": True},
("asin", f16): {"reference_in_float": True},
("atanh", f16): {"reference_in_float": True},
"cauchy": {"reference_in_float": True},
("cummax", f16): {"atol": 5e-4, "rtol": 0.002},
("cumsum", f16): {"reference_in_float": True},
"cumprod": {"reference_in_float": True, "atol": 7e-5, "rtol": 0.002},
"logcumsumexp": {"grad_atol": 8e-4, "grad_rtol": 0.001},
"exponential": {"reference_in_float": True},
"geometric": {"reference_in_float": True},
("kron", f16): {"reference_in_float": True},
"log_normal": {"reference_in_float": True},
("masked.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.batch_norm", f16): {"reference_in_float": True},
("nn.functional.batch_norm.without_cudnn", f16): {"reference_in_float": True},
("nn.functional.cosine_similarity", f16): {"reference_in_float": True},
("nn.functional.instance_norm", f16): {"reference_in_float": True},
("nn.functional.local_response_norm", f16): {"reference_in_float": True},
("nn.functional.normalize", f16): {"atol": 1e-3, "rtol": 0.05},
("nn.functional.rms_norm", f16): {"reference_in_float": True},
("nn.functional.soft_margin_loss", f16): {"reference_in_float": True},
("nn.functional.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.softsign", f16): {"reference_in_float": True},
("nn.functional.tanhshrink", f16): {"atol": 3e-4, "rtol": 0.001},
("outer", f16): {"reference_in_float": True},
("round.decimals_3", f16): {"reference_in_float": True},
("nn.functional.triplet_margin_loss", f16): {"atol": 1e-4, "rtol": 0.02},
("nn.functional.triplet_margin_with_distance_loss", f16): {
"atol": 1e-4,
"rtol": 0.02,
},
("sinc", f16): {"atol": 0.008, "rtol": 0.002},
("torch.ops.aten._safe_softmax.default", f16): {"atol": 5e-4, "rtol": 0.02},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("_softmax_backward_data", f16): {"atol": 0.008, "rtol": 0.002},
("special.log_ndtr", f64): {"atol": 1e-6, "rtol": 1e-5},
("std_mean.unbiased", f16): {"reference_in_float": True},
"uniform": {"reference_in_float": True},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-4, "rtol": 0.01},
# High atol due to precision loss
("nn.functional.interpolate.bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.upsample_bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.interpolate.bicubic", f64): {"atol": 1e-3, "rtol": 0},
# Unreasonably high atol requirement:
("index_reduce.mean", f16): {"check_gradient": False},
("index_reduce.mean", f32): {"check_gradient": False},
("index_reduce.mean", f64): {"check_gradient": False},
# Gradient contains non-finite entries:
("index_reduce.amin", f64): {"check_gradient": False},
("index_reduce.amin", f32): {"check_gradient": False},
("index_reduce.amin", f16): {"check_gradient": False},
("index_reduce.amax", f64): {"check_gradient": False},
("index_reduce.amax", f32): {"check_gradient": False},
("index_reduce.amax", f16): {"check_gradient": False},
("tanh", f16): {"atol": 1e-4, "rtol": 1e-2},
# reference_in_float can cause erroneous failures in sorting tests
"argsort": {"reference_in_float": False},
"sort": {"reference_in_float": False},
}
inductor_override_kwargs["xpu"] = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"empty_strided": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
# XPU
("cross", f16): {"reference_in_float": True},
("addr", f16): {"reference_in_float": True},
("baddbmm", f16): {"atol": 2e-3, "rtol": 0.002}, # decomp affects accuracy
("angle", f64): {"reference_in_float": True},
("asin", f16): {"reference_in_float": True},
("atanh", f16): {"reference_in_float": True},
"cauchy": {"reference_in_float": True},
("cummax", f16): {"atol": 5e-4, "rtol": 0.002},
("cumsum", f16): {"reference_in_float": True},
"cumprod": {"reference_in_float": True, "atol": 7e-5, "rtol": 0.002},
("dot", f16): {"atol": 1e-5, "rtol": 0.002},
"logcumsumexp": {"grad_atol": 8e-4, "grad_rtol": 0.001},
"exponential": {"reference_in_float": True},
"geometric": {"reference_in_float": True},
("kron", f16): {"reference_in_float": True},
("linalg.cross", f16): {"reference_in_float": True},
("linalg.vecdot", f16): {"atol": 1e-5, "rtol": 2e-2},
"log_normal": {"reference_in_float": True},
("logsumexp", f16): {"atol": 1e-5, "rtol": 1e-2},
("masked.cumprod", f16): {"atol": 1e-5, "rtol": 5e-2},
("masked.cumsum", f16): {"atol": 1e-5, "rtol": 5e-3},
("masked.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("masked.softmax", f16): {"atol": 2e-4, "rtol": 0.01},
("masked.var", f16): {"atol": 2e-5, "rtol": 5e-3},
("native_batch_norm", f64): {"atol": 1e-7, "rtol": 1e-5},
("_native_batch_norm_legit", f64): {"atol": 1e-7, "rtol": 5e-6},
("_batch_norm_with_update", f64): {"atol": 1e-7, "rtol": 1e-6},
("native_layer_norm", f16): {"atol": 5e-3, "rtol": 5e-3},
("native_layer_norm", f32): {"atol": 5e-3, "rtol": 5e-3},
("nn.functional.batch_norm", f16): {"reference_in_float": True},
("nn.functional.batch_norm", f64): {"atol": 1e-6, "rtol": 1e-6},
("nn.functional.batch_norm.without_cudnn", f16): {"reference_in_float": True},
("nn.functional.conv1d", f16): {"atol": 1e-5, "rtol": 6e-3},
("nn.functional.conv3d", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.conv_transpose2d", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.conv_transpose3d", f16): {"atol": 1e-5, "rtol": 5e-3},
("nn.functional.cosine_embedding_loss", f16): {"atol": 1e-5, "rtol": 2e-3},
("nn.functional.cosine_similarity", f16): {
"reference_in_float": True,
"atol": 1e-5,
"rtol": 5e-3,
},
("nn.functional.instance_norm", f16): {"reference_in_float": True},
("nn.functional.instance_norm", f64): {"atol": 1e-6, "rtol": 1e-6},
("nn.functional.layer_norm", f16): {"atol": 5e-3, "rtol": 2e-3},
("nn.functional.layer_norm", f32): {"atol": 5e-5, "rtol": 2e-3},
("nn.functional.local_response_norm", f16): {"reference_in_float": True},
("nn.functional.multilabel_soft_margin_loss", f16): {
"atol": 3e-4,
"rtol": 2e-3,
},
("nn.functional.normalize", f16): {"atol": 1e-3, "rtol": 0.05},
("nn.functional.rms_norm", f16): {"reference_in_float": True},
("nn.functional.soft_margin_loss", f16): {"reference_in_float": True},
("nn.functional.softmin", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.softsign", f16): {
"reference_in_float": True,
"atol": 1e-5,
"rtol": 0.005,
},
("nn.functional.tanhshrink", f16): {"atol": 3e-4, "rtol": 0.001},
("outer", f16): {"reference_in_float": True},
("round.decimals_3", f16): {"reference_in_float": True},
("nn.functional.triplet_margin_loss", f16): {"atol": 1e-4, "rtol": 0.02},
("nn.functional.triplet_margin_with_distance_loss", f16): {
"atol": 1e-4,
"rtol": 0.02,
},
("remainder", f16): {"atol": 1e-4, "rtol": 0.005},
("nn.functional.upsample_bilinear", f16): {"atol": 1e-5, "rtol": 0.002},
("sinc", f16): {"atol": 0.008, "rtol": 0.002},
("softmax", f16): {"atol": 1e-4, "rtol": 0.02},
("_softmax_backward_data", f16): {"atol": 0.008, "rtol": 0.002},
("special.log_ndtr", f64): {"atol": 1e-6, "rtol": 1e-5},
("std_mean.unbiased", f16): {
"reference_in_float": True,
"atol": 5e-5,
"rtol": 5e-3,
},
("trapezoid", f16): {"atol": 1e-5, "rtol": 5e-3},
("trapz", f16): {"atol": 1e-5, "rtol": 5e-3},
"uniform": {"reference_in_float": True},
("var_mean", f16): {"atol": 1e-5, "rtol": 2e-3},
("var_mean.unbiased", f16): {"atol": 1e-5, "rtol": 2e-3},
("vdot", f16): {"atol": 1e-5, "rtol": 2e-3},
# Following tests are failing with strict comparision but atol=1 is acceptable due roundings errors
# High atol due to precision loss
("nn.functional.interpolate.bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.upsample_bilinear", f64): {"atol": 5e-4, "rtol": 0},
("nn.functional.interpolate.bicubic", f64): {"atol": 1e-3, "rtol": 0},
# Unreasonably high atol requirement:
("index_reduce.mean", f16): {"check_gradient": False},
("index_reduce.mean", f32): {"check_gradient": False},
("index_reduce.mean", f64): {"check_gradient": False},
# Gradient contains non-finite entries:
("index_reduce.amin", f64): {"check_gradient": False},
("index_reduce.amin", f32): {"check_gradient": False},
("index_reduce.amin", f16): {"check_gradient": False},
("index_reduce.amax", f64): {"check_gradient": False},
("index_reduce.amax", f32): {"check_gradient": False},
("index_reduce.amax", f16): {"check_gradient": False},
("tanh", f16): {"atol": 1e-4, "rtol": 1e-2},
("nn.functional.embedding_bag", f16): {"check_gradient": False},
("nn.functional.embedding_bag", f32): {"check_gradient": False},
("nn.functional.embedding_bag", f64): {"check_gradient": False},
("_unsafe_masked_index", f16): {"atol": 1e-5, "rtol": 2e-3},
("_unsafe_masked_index_put_accumulate", f16): {"atol": 1e-5, "rtol": 5e-3},
# reference_in_float can cause erroneous failures in sorting tests
"argsort": {"reference_in_float": False},
"sort": {"reference_in_float": False},
}
# Test with one sample only for following ops
inductor_one_sample = defaultdict(dict)
inductor_one_sample["cpu"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f32, f64},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
}
inductor_one_sample["cuda"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16, i32, i64},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f16, f32, f64},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
"__rdiv__": {f16},
"__rmod__": {f16, i64},
"__rmul__": {f16},
"__rpow__": {f16},
"_unsafe_masked_index": {f16},
"_unsafe_masked_index_put_accumulate": {f16},
"addcdiv": {f16},
"addcmul": {f16},
"atan2": {f16},
"cumsum": {f16},
"cumulative_trapezoid": {f16},
"dist": {f16},
"div.no_rounding_mode": {f16},
"fmod": {f16},
"grid_sampler_2d": {f16},
"index_fill": {f16, f32, f64},
"ldexp": {f16},
"lerp": {f16},
"linalg.householder_product": {f32},
"linalg.matrix_norm": {f16},
"linalg.vector_norm": {f16},
"masked.cumsum": {f16},
"masked.logsumexp": {f16},
"masked.mean": {b8},
"masked.normalize": {f16},
"masked.prod": {f16},
"masked.std": {f16},
"masked.var": {f16},
"mul": {f16},
"nn.functional.alpha_dropout": {f16, f32, f64},
"nn.functional.avg_pool1d": {f16, f32, f64},
"nn.functional.avg_pool2d": {f16, f32, f64},
"nn.functional.avg_pool3d": {f16, f32, f64},
"nn.functional.binary_cross_entropy": {f16},
"nn.functional.binary_cross_entropy_with_logits": {f16},
"nn.functional.conv2d": {f16},
"nn.functional.cosine_embedding_loss": {f16},
"nn.functional.dropout2d": {f16, f32, f64},
"nn.functional.dropout3d": {f16, f32, f64},
"nn.functional.dropout": {f16, f32, f64},
"nn.functional.feature_alpha_dropout.with_train": {f16, f32, f64},
"nn.functional.fractional_max_pool2d": {f16, f32, f64},
"nn.functional.fractional_max_pool3d": {f16, f32, f64},
"nn.functional.group_norm": {f16},
"nn.functional.hinge_embedding_loss": {f16},
# Enabling all tests for this test fails randomly
# See https://github.com/pytorch/pytorch/issues/129238
"nn.functional.huber_loss": {f16},
"nn.functional.interpolate.bicubic": {f16},
"nn.functional.interpolate.bilinear": {f16},
"nn.functional.interpolate.trilinear": {f16},
"nn.functional.kl_div": {f16},
"nn.functional.margin_ranking_loss": {f16},
"nn.functional.max_pool1d": {f16, f32, f64},
"nn.functional.max_pool3d": {f16},
"nn.functional.mse_loss": {f16},
"nn.functional.multi_margin_loss": {f16},
"nn.functional.multilabel_margin_loss": {f16},
"nn.functional.multilabel_soft_margin_loss": {f16},
"nn.functional.normalize": {f16},
"nn.functional.pad.replicate": {f16, f32, f64},
"nn.functional.pad.reflect": {f16},
"nn.functional.pairwise_distance": {f16},
"nn.functional.poisson_nll_loss": {f16},
"nn.functional.rms_norm": {f16},
"norm": {f16},
"pow": {f16},
"prod": {f16},
"scatter_reduce.amax": {f16, f32, f64},
"scatter_reduce.amin": {f16, f32, f64},
"scatter_reduce.mean": {f16, f32, f64},
"special.xlog1py": {f16},
"std": {f16},
"std_mean": {f16},
"svd_lowrank": {f32, f64},
"trapezoid": {f16},
"trapz": {f16},
"true_divide": {f16},
"var": {f16},
"var_mean": {f16},
"xlogy": {f16},
}
inductor_one_sample["xpu"] = {
"_segment_reduce.lengths": {f16},
"_segment_reduce.offsets": {f16},
"addmv": {f16},
"as_strided.partial_views": {f16},
"corrcoef": {f16},
"diff": {f16},
"einsum": {f16, i32},
"gradient": {f16},
"histogram": {f32, f64},
"histogramdd": {f32, f64},
"index_put": {f16, f32, f64},
"linalg.eig": {f32, f64},
"linspace": {f16, i32, i64},
"linspace.tensor_overload": {f16, f32, f64, i32, i64},
"logspace": {f16, i32, i64},
"logspace.tensor_overload": {f16, f32, f64, i32, i64},
"masked_logsumexp": {i64},
"max_pool2d_with_indices_backward": {f16, f32, f64},
"new_empty_strided": {f16},
"nn.functional.adaptive_avg_pool3d": {f16},
"nn.functional.adaptive_max_pool1d": {f16, f32},
"nn.functional.adaptive_max_pool2d": {f16, f32},
"nn.functional.bilinear": {f16},
"nn.functional.conv_transpose1d": {f16},
"nn.functional.conv_transpose2d": {f16},
"nn.functional.conv_transpose3d": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.cross_entropy": {f16, f32, f64},
"nn.functional.gaussian_nll_loss": {f16},
"nn.functional.grid_sample": {f16, f32, f64},
"nn.functional.interpolate.area": {f16},
"nn.functional.nll_loss": {f16, f32, f64},
"normal": {f16, f32, f64},
"put": {f16, f32, f64},
"take": {b8, f16, f32, f64, i32, i64},
"__rdiv__": {f16},
"__rmod__": {f16, i64},
"__rmul__": {f16},
"__rpow__": {f16},
"_unsafe_masked_index": {f16},
"_unsafe_masked_index_put_accumulate": {f16},
"addcdiv": {f16},
"addcmul": {f16},
"atan2": {f16},
"cumsum": {f16},
"cumulative_trapezoid": {f16},
"dist": {f16},
"div.no_rounding_mode": {f16},
"fmod": {f16},
"grid_sampler_2d": {f16},
"index_fill": {f16, f32, f64},
"ldexp": {f16},
"lerp": {f16},
"linalg.householder_product": {f32},
"linalg.matrix_norm": {f16},
"linalg.vector_norm": {f16},
"masked.cumsum": {f16},
"masked.logsumexp": {f16},
"masked.mean": {b8},
"masked.normalize": {f16},
"masked.prod": {f16},
"masked.std": {f16},
"masked.var": {f16},
"mul": {f16},
"nn.functional.alpha_dropout": {f16, f32, f64},
"nn.functional.avg_pool1d": {f16, f32, f64},
"nn.functional.avg_pool2d": {f16, f32, f64},
"nn.functional.avg_pool3d": {f16, f32, f64},
"nn.functional.binary_cross_entropy": {f16},
"nn.functional.binary_cross_entropy_with_logits": {f16},
"nn.functional.conv2d": {f16},
"nn.functional.cosine_embedding_loss": {f16},
"nn.functional.dropout2d": {f16, f32, f64},
"nn.functional.dropout3d": {f16, f32, f64},
"nn.functional.dropout": {f16, f32, f64},
"nn.functional.feature_alpha_dropout.with_train": {f16, f32, f64},
"nn.functional.fractional_max_pool2d": {f16, f32, f64},
"nn.functional.fractional_max_pool3d": {f16, f32, f64},
"nn.functional.group_norm": {f16},
"nn.functional.hinge_embedding_loss": {f16},
# Enabling all tests for this test fails randomly
# See https://github.com/pytorch/pytorch/issues/129238
"nn.functional.huber_loss": {f16},
"nn.functional.interpolate.bicubic": {f16},
"nn.functional.interpolate.bilinear": {f16},
"nn.functional.interpolate.trilinear": {f16},
"nn.functional.kl_div": {f16},
"nn.functional.margin_ranking_loss": {f16},
"nn.functional.max_pool1d": {f16, f32, f64},
"nn.functional.max_pool3d": {f16},
"nn.functional.mse_loss": {f16},
"nn.functional.multi_margin_loss": {f16},
"nn.functional.multilabel_margin_loss": {f16},
"nn.functional.multilabel_soft_margin_loss": {f16},
"nn.functional.normalize": {f16},
"nn.functional.pad.replicate": {f16, f32, f64},
"nn.functional.pad.reflect": {f16},
"nn.functional.pairwise_distance": {f16},
"nn.functional.poisson_nll_loss": {f16},
"nn.functional.rms_norm": {f16},
"norm": {f16},
"pow": {f16},
"prod": {f16},
"scatter_reduce.amax": {f16, f32, f64},
"scatter_reduce.amin": {f16, f32, f64},
"scatter_reduce.mean": {f16, f32, f64},
"special.xlog1py": {f16},
"std": {f16},
"std_mean": {f16},
"svd_lowrank": {f32, f64},
"trapezoid": {f16},
"trapz": {f16},
"true_divide": {f16},
"var": {f16},
"var_mean": {f16},
"xlogy": {f16},
}
def collection_decorator(fn):
@functools.wraps(fn)
def inner(self, device, dtype, op):
try:
fn(self, device, dtype, op)
except Exception as e:
if COLLECT_EXPECT:
variant = op.variant_test_name
op_key = op.name if not variant else (op.name, variant)
device_type = torch.device(device).type
# failed_reasons[device_type, op_key].add(repr(e))
seen_failed[device_type, op_key].add(dtype)
raise e
return inner
class TestInductorOpInfo(TestCase):
def tearDown(self):
torch._dynamo.reset()
check_model = check_model
check_model_gpu = check_model_gpu
@onlyNativeDeviceTypes
@suppress_warnings
@skipCUDAMemoryLeakCheckIf(
True
) # inductor kernels failing this test intermittently
@skipCUDAIf(not HAS_CUDA, "Skipped! Triton not found")
@skipXPUIf(not HAS_XPU, "Skipped! Supported XPU compiler not found")
@skipCPUIf(not HAS_CPU, "Skipped! Supported CPU compiler not found")
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfTorchDynamo("Test uses dynamo already")
@skipIfCrossRef
@_ops(op_db[START:END])
@skipOps("TestInductorOpInfo", "test_comprehensive", test_skips_or_fails)
@patch("torch._dynamo.config.raise_on_unsafe_aot_autograd", True)
@torch._inductor.config.patch(
{"implicit_fallbacks": False, "triton.autotune_pointwise": False}
)
@collection_decorator
def test_comprehensive(self, device, dtype, op):
device_type = torch.device(device).type
assert device_type in (GPU_TYPE, "cpu")
torch._dynamo.reset()
with torch.no_grad():
# TODO: should we move empty_cache to the common device interface
if device_type == "cuda":
torch.cuda.empty_cache()
elif device == "xpu":
torch.xpu.empty_cache()
op_name = op.name
if op.variant_test_name:
op_name += f".{op.variant_test_name}"
# Skip dtype=torch.uint8 for all ops except upsample and interpolate:
allowed_dtypes = [f16, f32, f64, i32, i64, b8]
if op_name not in (
"nn.functional.interpolate.bilinear",
"nn.functional.interpolate.bicubic",
"nn.functional.upsample_bilinear",
"nn.functional.upsample_nearest",
):
if dtype not in allowed_dtypes:
raise unittest.SkipTest("Skipped!")
# with open("test_output.txt", "a") as f:
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True, file=f)
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True)
if dtype in inductor_skips[device_type].get(op_name, set()):
test_expect = ExpectedTestResult.SKIP
# with open("test_output.txt", "a") as f:
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True, file=f)
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True)
elif dtype in inductor_expected_failures_single_sample[device_type].get(
op_name, set()
) or dtype in inductor_gradient_expected_failures_single_sample[
device_type
].get(
op_name, set()
):
test_expect = ExpectedTestResult.XFAILURE
else:
test_expect = ExpectedTestResult.SUCCESS
overridden_kwargs = {}
overridden_kwargs.update(
inductor_override_kwargs.get(device_type, {}).get(op_name, {})
)
overridden_kwargs.update(
inductor_override_kwargs.get(device_type, {}).get((op_name, dtype), {})
)
func = op.get_op()
def fn(*args, **kwargs):
return func(*args, **kwargs)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(device_type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
if (
dtype in inductor_one_sample.get(device_type, {}).get(op_name, {})
) and not ALL_SAMPLES:
if isinstance(samples, (list, tuple)):
samples = [samples[0]]
else:
samples = [next(samples)]
class HasRngOp(TorchDispatchMode):
def __init__(self) -> None:
super().__init__()
self.has_rng_op = False
def __torch_dispatch__(self, func, types, args, kwargs=None):
kwargs = kwargs if kwargs else {}
if torch.Tag.nondeterministic_seeded in func.tags:
self.has_rng_op = True
return func(*args, **kwargs)
def do_nopython_and_has_rng(fn, args, kwargs):
try:
mode = FakeTensorMode()
def map_to_fake(e):
if isinstance(e, torch.Tensor):
return mode.from_tensor(e)
else:
return e
args, kwargs = tree_map(map_to_fake, (args, kwargs))
with HasRngOp() as rng_mode, mode:
with enable_python_dispatcher():
fn(*args, **kwargs)
except (DataDependentOutputException, DynamicOutputShapeException):
return False, rng_mode.has_rng_op
return True, rng_mode.has_rng_op
def get_contexts(has_rng_op):
if has_rng_op:
# TODO - enable this, running into errors
return (
# (
# lambda: torch._inductor.config.patch(
# {"fallback_random": True, "implicit_fallbacks": True}
# ),
# {"assert_equal": True},
# ),
(
contextlib.nullcontext,
{"assert_equal": False},
),
)
return ((contextlib.nullcontext, {}),)
try:
def _get_tolerances(dtype):
_custom_tolerances = {
torch.float32: (1.3e-5, 1.5e-5),
}
if dtype in _custom_tolerances:
return _custom_tolerances[dtype]
else:
return None, None
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# UNCOMMENT TO DEBUG SEGFAULTS
# with open("test_output.txt", "a") as f:
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True)
rtol, atol = _get_tolerances(dtype)
if device_type == GPU_TYPE:
# opinfo test case have already place the input on the correct device
# so we don't need do additional copy by setting copy_to_gpu=False
no_python, has_rng_op = do_nopython_and_has_rng(fn, args, kwargs)
for context_fn, kwarg_overrides in get_contexts(has_rng_op):
with context_fn():
adjusted_kwargs = {
"check_lowp": False,
"nopython": no_python,
"copy_to_gpu": False,
"reference_in_float": False,
"check_gradient": requires_grad,
"check_has_compiled": no_python,
"output_process_fn_grad": sample_input.output_process_fn_grad,
"atol": atol,
"rtol": rtol,
}
adjusted_kwargs.update(overridden_kwargs)
adjusted_kwargs.update(kwarg_overrides)
self.check_model_gpu(
fn,
args,
kwargs,
**adjusted_kwargs,
)
elif device_type == "cpu":
no_python, has_rng_op = do_nopython_and_has_rng(fn, args, kwargs)
for context_fn, kwarg_overrides in get_contexts(has_rng_op):
with context_fn():
adjusted_kwargs = {
"check_lowp": False,
"nopython": no_python,
"check_has_compiled": no_python,
# skip checking gradient on CPU for now
"check_gradient": False,
"atol": atol,
"rtol": rtol,
}
adjusted_kwargs.update(overridden_kwargs)
adjusted_kwargs.update(kwarg_overrides)
self.check_model(
fn,
args,
kwargs,
**adjusted_kwargs,
)
except Exception as e:
known_failure = False
if dtype in inductor_should_fail_with_exception[device_type].get(
op_name, set()
):
failure = inductor_should_fail_with_exception[device_type][op_name][
dtype
]
if failure in str(e):
known_failure = True
if not known_failure:
raise e
# with open("test_output.txt", "a") as f:
# print(f"SUCCEEDED OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
instantiate_device_type_tests(TestInductorOpInfo, globals(), allow_xpu=True)
if __name__ == "__main__":
run_tests()